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ABSTRACT 

The general-purpose computing processor performs a wide range of functions. Although the 

performance of general-purpose processors has been steadily increasing, certain software tech

nologies like multimedia and digital signal processing applications demand ever more comput

ing power. Reconfigurable computing has emerged to combine the versatility of general-purpose 

processors with the customization ability of ASICs. The basic premise of reconfigurability is to 

provide better performance and higher computing density than fixed configuration processors. 

Most of the research in reconfigurable computing is dedicated to on-chip functional logic. If 

computing resources are adaptable to the computing requirement, the maximum performance 

can be achieved. To overcome the gap between processor and memory technology, the size of 

on-chip cache memory has been consistently increasing. The larger cache memory capacity, 

though beneficial in general, does not guarantee a higher performance for all the applications 

as they may not utilize all of the cache efficiently. To utilize on-chip resources effectively 

and to accelerate the performance of multimedia apphcations specifically, we propose a new 

architecture - Adaptive Balanced Computing (ABC). ABC uses dynamic resource configura

tion of on-chip cache memory by integrating Reconfigurable Functional Caches (RFC). RFC 

can work as a conventional cache or as a specialized computing unit when necessary. In or

der to convert a cache memory to a computing unit, we include additional logic to embed 

multi-bit output LUTs into the cache structure. We add the reconfigurability of cache mem

ory to a conventional processor with minimal modification to the load/store microarchitecture 

and with minimal compiler assistance. ABC architecture utilizes resources more efficiently by 

reconfiguring the cache memory to computing units dynamically. The area penalty for this 

reconfiguration is about 50-60% of the memory cell cache array-only area with faster cache 
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access time. In a base array cache (parallel decoding caches), the area penalty is 10-20% of the 

data array with 1-2% increase in the cache access time. However, we save 27% for FIR and 

44% for DCT/IDCT in area with respect to memory cell array cache and about 80% for both 

applications with respect to base array cache if we were to implement all these units separately 

(such as ASICs). The simulations with multimedia and DSP apphcations (DCT/IDCT and 

FIR/IIR) show that the resource configuration with the RFC speedups ranging from 1.04X to 

3.94X in overall apphcations and from 2.61X to 27.4X in the core computations. The simula

tions with various parameters indicate that the impact of reconfiguration can be minimized if 

an appropriate cache organization is selected. 
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CHAPTER 1. INTRODUCTION 

The world's first electronic digital computer — the Atanasoff-Berry Computer - was de

veloped at Iowa State University during 1937-42 [1]. After the advent of this first digital 

computer, new technologies have been developing dramatically. This high level of improve

ment and innovation in technologies has made computer systems one of the most essential 

pieces of equipment in the world. The central component in computer technology is the micro

processor, which executes tasks and controls the utilization of other components. Industry and 

academia have been building high performance microprocessors with significant enhancements 

in architecture and physical design. In this thesis, we propose a new architecture - Adaptive 

Balanced Computing (ABC) using a Reconfigurable Functional Cache (RFC) as one possible 

solution to attain high performance in current and future microprocessors. First, we compare 

the reconfigurable computing with general-purpose computing in Section 1.1. Then, in Sec

tion 1.2, we describe the concept of adaptive balanced computing. Finally, the motivation and 

approaches of our work are presented in Section 1.3. 

1.1 General-purpose computing vs.  reconfigurable computing 

The general-purpose computing processor performs a wide range of functions. This ver

satility makes the general-purpose processor one of the most flexible devices in machinery; it 

is also cost-effective for the versatility provided. The trade-off for this versatility, however, is 

performance. Although the performance of general-purpose processors has been steadily in

creasing, certain software technologies like multimedia and digital signal processing applications 

demand ever more computing power. These computations can be accelerated by embedded 

processors and/or Application-Specific Integrated-Chips (ASICs). The general-purpose pro
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cessor is assisted by ASIC-like co-processors to provide a specialized/customized computing 

unit. However, it is quite expensive to integrate an ASIC-like specialized computing unit into 

a general-purpose processor due to the chip area constraint. In addition, the general purpose 

processor's versatility requirement limits the level of customization. 

Reconfigurable computing has emerged to combine the versatility of general-purpose pro

cessors with the customization ability of ASICs. The reconfiguration in logic functionality 

allows for a number of computations to be accelerated using specialized/customized units 

for the computing requirements. In a given chip area, the density of computing power in 

reconfigurable logic is higher than in general-purpose processors and ASICs [2]. Another fea

ture of reconfigurable computing is the ability to execute computations at task (or function) 

level. Unlike instruction-level execution in general-purpose processors, an entire function can 

be mapped and executed on the reconfigurable logic. This provides a function-level (coarse

grained) optimization to increase the performance of apphcations. The reconfigurable logic 

that is integrated into general-purpose processors can reduce the number of instructions by 

replacing the instructions with function-level customized logic. Moreover, the on-chip reconfig

urable logic provides the conventional processor with an opportunity to exploit the parallelism 

by unloading a heavy computation (an entire function) from the core processor to the logic. 

Given these benefits, the major problem with reconfigurable logic is the configuration time 

and the dominating chip area for the interconnects compared to logic-cell area. However, we 

expect the configuration time to be relatively small in comparison to the computing time; 

otherwise, the acceleration of computation would be counteracted. Because the programmable 

interconnections among the logic cells are the basis for reconfigurability, the larger chip area 

for the interconnects is unavoidable. However, the programenability of interconnection could 

be adjusted and customized for a range of applications if an area optimization is highly desired. 
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1.2 Adaptive balanced computing 

Computing performance can be characterized by the balance [3] between the computing and 

memory bandwidths of a processor. If the memory bandwidth matches the demand from the 

computing bandwidth, or vice versa, the highest performance can be achieved. Nevertheless, 

such an ideal computing/memory balance is unrealistic unless infinite amount of resources are 

available and adjustable. 

The current general-purpose processors may not be able to offer such a dynamic resource 

balance because of the fixed resource configuration. A static allocation of resources was at

tempted in [4], where processor, cache and bus resources were balanced. However, a noteworthy 

feature of current processors is the large amount of on-chip real-estate dedicated to storage 

(such as caches, registers, and buffers). In conventional processors, more than half of an entire 

chip area is cache memory [5]. The high capacity of on-chip storage provides the instructions 

and data at peak speeds by reducing the stall time caused by off-chip communications. A 

certain threshold of performance can be achieved with a large size of memory in a wide range 

of apphcations. However, a large amount of fixed memory does not always guarantee better 

performance for all applications because of different memory and computing requirements for 

apphcations. 

The basic premise of reconfigurability is to provide better performance and higher com

puting density [2] than the fixed configuration processors. Currently, most of the research in 

reconfigurable computing is dedicated to on-chip functional logic [6, 7, 8, 9, 10, 11, 12, 13]. The 

logic reconfiguration delivers greater performance by providing highly specialized computing 

resources. However, the on-chip resources are under-utilized if few computations exploit the 

logic. This results in a low balance between computing and memory in various applications. 

If a variable type of computing resources is provided dynamically, the maximum perfor

mance over a variety of apphcations can be achieved. This dynamic resource configuration 

offers an adaptive balanced computing environment to the application. In this thesis, we 

present the benefits of adaptive balanced computing for multimedia and digital signal process

ing applications. 
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1.3 Motivation and approach 

There are several challenges in the design of next generation microprocessors, such as 

instruction-level parallelism, compiler optimizations, higher reliability, adaptability, and mem

ory capacity/performance [14] with a billion transistors [15, 16]. To overcome the gap between 

processor and memory technology, the size of on-chip cache memory has been constantly in

creasing. This trend is likely to continue even in deep-submicron technology. In a modern 

microprocessor, more than half of the transistors (80% of the total transistor and up to 50% 

of die area [17]) are used for cache memories. For example, Hewlett-Packard PA-8500 [18] 

contains 1.5MB cache as 1MB for D-cache and 0.5MB for I-cache. The larger cache memory 

capacity, though beneficial in general, does not guarantee a higher performance for all the 

applications as they may not utilize the full cache efficiently. Moreover, a larger cache memory 

hardly increases the performance of multimedia apphcations due to the streaming nature and 

lack of temporal locality in media data [19, 20, 21]. 

Merged DRAM Logic (MDL) [22, 23] has been introduced to provide data processing at 

peak speeds with faster accesses to data storage from computing units. This is done by 

integrating static logic and DRAM onto the same die. Intelligent Memory (IRAM) [24, 25] 

has also been integrated into on-chip microprocessors to reduce the bottleneck of off-chip 

communication. This is accomplished by increasing the capacity of on-chip storage using 

DRAM with a high density instead of SRAM. However, the integration of static logic and 

DRAM generates design difficulties due to the different fabrication process technologies. This 

causes degradation in terms of area and time for both logic and DRAM. For example, the 

performance of logic gates in MDL is degraded due to the slower transistor switching and the 

area is also increased due to the fewer number of routing layers under the DRAM process. 

In deep-submicron technology, only a relatively small region can be reached in one processor 

clock cycle due to the delay of interconnects. For instance, only 16% of the die length (in billion 

transistors) can be reached within one cycle period (at 1.2 GHz) at O.lfim technology [26]. This 

implies that a core control unit in a microprocessor may not reach all the resources in a short 

cycle time. This results in more complicated signal propagation structure. For example, more 
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driver buffers axe needed between segments of wire to reduce the effect of relatively long wire 

delay. It would be beneficial to have high-demand resources within a single cycle distance. The 

resources that can perform independent of the processor core could be placed farther away. 

Any time-intensive computation that can be carried out independently may be scheduled on 

such resources. This allows other resources to remain physically closer to the core processor 

within one cycle distance. 

To provide resources variable to the computing requirements, we propose a new architecture 

— Adaptive Balanced Computing (ABC). ABC uses a dynamic resource configuration of on-

chip cache memory by converting the cache into a specialized computing unit, which is able to 

carry out independent computations. A reconfigurable functional cache (RFC) has the ability 

to operate as conventional cache memory or as a specialized computing unit [27, 28, 29]. With 

a small amount of additional logic and a slightly modified microarchitecture, a part of the cache 

memory can be configured to perform specialized computations in a conventional processor. 

Several researchers have studied the use of reconfigurable logic for on-chip coprocessors [6, 

7, 8, 10, 11]. They have shown that such logic can speed up many apphcations. An on-chip 

coprocessor improves the performance of the apphcations and reduces the bottleneck of off-

chip communications. In Gaxp architecture [6], programmable logic resides on the processor-

chip to accelerate some computations. The frequently used computations are mapped to the 

programmable logic. If an application does not need the logic, these functions remain idle. 

PipeRench [30] reconfigures the hardware every cycle to overcome the limitation of hardware 

resources. 

Xilinx Virtex FPGA family [31] allows partial reconfiguration. However, the dynamic par

tial reconfiguration can only be done at the granularity of a configurable logic block consisting 

of four 4-input look-up tables (described in Section 2.1). An advantage of this architecture 

is that a number of smaller configuration memory blocks can be combined to obtain a larger 

memory. However, a fine-grained memory cannot be synthesized efficiently in terms of area 

and time. In particular, providing a large number of decoders for small chunks of memory is 

expensive. 
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These observations motivate ABC to use a reconfigurable module which works as a function 

unit as well as a cache memory. Our goal is to develop such a reconfigurable cache/function unit 

module and integrate it into the existing microarchitecture to improve the overall performance 

with low area and time overhead. The reconfigurable cache/function unit module can be 

implemented using multi-bit output LUTs in the cache memory array, which is similar to 

FPGA-like logic. The expectation is that significant logic sharing between the cache and 

function unit would lead to relatively low logic overhead for an RFC. If the area overhead 

of an RFC exceeds the area of the dedicated logic for that function, or if the time overhead 

of cache is significant (if the time increases more than 5% — 10% - commonly treated as a 

significant increase), this is too big a compromise. 

We integrate the RFC into a RISC superscalar microprocessor to build a computer which 

uses Adaptive Balanced Computing. To implement the RFC in the existing cache structure, 

we use two types of cache organizations, a multiple-set associative cache and a cache memory 

further partitioned into sub-cache blocks. Some of these cache blocks can be configured as 

specialized computing units. This will reduce the cache memory capacity when such a recon

figuration is in effect. However, we propose to organize the cache partition in such a way that 

the performance penalty is minimal. The entire cache organization with the RFCs is described 

in Section 5.2.2. Using various cache mapping organizations, we study the overall impact on 

the performance of selected benchmarks, such as multimedia and DSP applications. 

There are some potential shortcomings with integrating RFC into a conventional micro

processor. Reconfiguring resources on-the-fly may affect the existing architectural behavior. 

For example, if a portion of the cache is converted into a functional unit, it increases the miss 

rate due to the smaller cache size. It may also require significant context switching due to the 

cache sharing between configurations and regular program data. However, we are targeting 

applications in which a large cache is not used effectively (e.g. multimedia applications). This 

implies that the smaller cache size by the reconfiguration does not affect the overall cache 

behavior significantly. In addition, our microarchitecture does not require any large amount of 

context switching. Loading configuration data initially is the only context switching required 
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when the RFC is configured as a computing unit. Other small amounts of configuration data 

loaded partially at run-time are not likely to be an outstanding problem. By using the existing 

microarchitecture, the integration of RFC does not modify the entire architecture significantly. 

In cache design, the size of cache memory increases due to the additional logic and intercon

nections. For high performance computing, additional chip area would not be a significant 

problem in the microprocessor design. The increased cache area may increase the cache access 

time in a conventional cache. In another cache model, the proposed new cache structure may 

decrease the time. The estimations for both models are presented in Section 4.4. 

1.4 Thesis organization 

The background and related work to our research is described in Chapter 2. In Chapter 3, 

we describe the problem statement of our work. Chapter 4 describes the architecture and de

sign of a reconfigurable functional cache (RFC) with the functional unit and cache operations 

with multi-bit output LUTs. The ABC microarchitecture is described in Chapter 5. Chap

ter 6 presents examples of functions (Multiply-and-Accumulator and Distributed Arithmetic) 

mapped to the RFC. In Chapter 7, we present the performance results of our architecture. 

Finally, we conclude the thesis in Chapter 8. 
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CHAPTER 2. BACKGROUND 

To better understand the problem, presented in. this thesis, we describe the characteristics 

and architectures for FPGAs, reconfigurable logic in a processor, memories with computa

tion, SIMD extension in microprocessors, and a conventional cache memory structure in Sec

tion 2.1, 2.2, 2.3, 2.4, 2.5, respectively. Characteristics of cache memory in media applications 

is also presented. A typical superscalar microprocessor is described in Section 2.6. Finally, we 

discuss about the trends of future microprocessor in Section 2.7. 

2.1 FPGAs 

We use Xilinx [32] terminology in describing an FPGA (Field Programmable Gate Array) 

architecture. FPGAs can be viewed as a two-dimensional array of CLBs (Configurable Logic 

Blocks) - CLB is a primitive PE (programmable element) - with interspersed routing channels 

as shown in Figure 2.1. Each CLB consists of configurable gates realized through LUTs (Look

up Tables). The CLBs are connected and communicate through flip-flops and programmable 

interconnections implemented using programmable pass gates and multiplexors. 

LUTs are the essential component to implement any logic function on FPGAs. An n input 

LUT depicted in Figure 2.2 can represent 22" number of functions. An LUT usually has 

four inputs and one output out of an S RAM-based memory to keep the overall operation and 

routing efficient [33]. However, the one-bit output granularity of each LUT results in a large 

interconnect area - even larger than the area of LUTs - and delay due to a number of switches 

for the programmability [34]. 

Using these programmable elements (PEs), user-defined functions can be implemented on 

FPGAs. Initial configuration is done by loading all the necessary configuration data into the 
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Interconnection 

CLB CLB CLB CLB 

CLB CLB CLB CLB 

Figure 2.1 FAG A structure 

PEs and configuring the programmable interconnection. Once configured, it performs the 

static function until reloading other configurations. In addition, configuration and computa

tion cannot be performed concurrently due to technology difficulty between configuring and 

computing on FPGAs. The configuration of Xilinx Virtex FPGAs [31] is processed in three 

phases. First, the configuration memory is cleared. Then, the configuration data is loaded. 

Finally, the logic is activated by a start-up process. They also support readback of the contents 

for all the flip-flops/latches along with the configuration data in the configuration memory for 

verification and real-time debugging. 
2An entries 

^ MUX / 

1-bit output 

Figure 2.2 An n input Look-Up Table (LUT) with one-bit output 

FPGAs map and execute virtually any kind of applications by writing the contents of LUTs 

based on the applications to represent various logic functions and configuring programmable 

interconnection to propagate data/control signals. Most of the common applications performed 

in FPGAs are DSP applications [35, 36]. 
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2.2 Integration of processor and reconfigurable logic 

Several researchers have investigated the issues associated with coupling processors and 

reconfigurable logic on a single die [12]. One motivation behind the idea is to give additional 

resources for computing-bound programs. Most of these approaches are targeting embedded 

and compute-intensive applications, such as video/audio processing, DSP, encryption, sequence 

matching applications, etc. in on-chip processor. In addition to the additional physical hard

ware, the architectural integration of reconfigurable logic into processors may require either a 

new instruction set (compiler-driven) or hardware/software co-design to exploit the logic. 

2.2.1 Garp Architecture: Reconfigurable logic in a processor 

Garp [6] architecture extended to MIPB-U instruction set incorporates an on-chip pro

grammable logic - array of logic blocks. The reconfigurable array consists of control and logic 

blocks. The basic quantity of data in the array is 2 bits. Each logic block similar to CLBs in 

Xilinx 4000 series [37] can implement a function of up to four 2-bit inputs. The arrays con

nected through local/global wires vertically and horizontally carry the 2-bit quantities grouped 

in pairs. The loading and execution of array configuration is under the control of the main 

processor. 

The logic block is controlled by the processor with a number of new instructions to configure 

the reconfigurable array as well as to move the data between the array and the processor's own 

registers. Garp also allows partial array configurations at a minimum of one row. The recon

figurable logic also has direct access to main memory through additional data buses between 

the logic and off-chip memory. Various structured computations are mapped and executed in 

the programmable logic and interconnection, but there are no resource reconfigurations. 

2.2.2 DPGA-coupled microprocessor 

DPGAs (Dynamically Programmable Gate Arrays) have constructed a hybrid architecture 

of FPGAs and SIMD arrays by reconfiguring cached configurations and performing different 

operations simultaneously, respectively [38, 39]. Array elements consist of 4-LUTs with a 
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4rContext memory using DRAM depicted in Figure 2.3. The multi-context of configuration 

data is provided by on-chip memory (context DRAM) for multiple array functionalities with 

high/local on-chip bandwidth to reconfigure rapidly among different computations in each 

array element. 4x4 array elements are grouped into a sub-array with local interconnects. 

Each sub-array is connected and routed via global crossbar interconnections. 

4-context DRAM 

Multiplexers 

Context 4 

Context! 

Context 2 

One of four fonctions 

Figure 2.3 4-LUT with 4-context DRAM 

The computational power and flexibility of DPGA allow conventional microprocessors to 

accelerate compute-intensive and special-purpose applications through a coprocessor [7]. The 

integration of DPGA into microprocessors requires additional instructions for the computa

tional cooperation and communications between the processor core (fixed logic) and reconfig

urable logic. Pre-defined subroutines for the reconfigurable logic - which would be assisted 

by hardware synthesis tools - would be used in high-level programming languages as library 

routines for the acceleration of applications. Tightly coupled DPGA processing arrays - re-

configurable logic - reduce the limitations of the communication between the processor and 

reconfigurable logic as well as the overheads for the reconfiguration. 

2.2.3 ConCISe 

ConCISe proposes a smart compilation chain with a hardware synthesis tool which gen

erates application-specific custom instructions to support CPLD-based RFU (Reconfigurable 

Functional Unit) in RISC micro-architecture [40]. Thus, the RFU implemented using PAL 
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(Programmable Array Logic) and PLA(ProgrammabIe Logic Array) executes the different 

customized instructions generated at compile-time. 

In the microarchitecture, the RFU is placed in the execution stage of a standard RISC 

pipeline to provide an extra functional unit. The custom instructions to be executed in the 

RFU contain the RFU configuration for decoding a specific configuration and register numbers 

for the register-register operations. The main features of the microarchitecture are as follows. 

It avoids partial reconfiguration to reduce the reconfiguration latency by adding more resources. 

It also minimizes logic complexity and optimizes resource utilization at compile-time with a 

logic synthesis tool. The compilation chain makes it easier for the application programmers to 

exploit the RFU in their applications. 

The compilation chain reduces/eliminates the reconfiguration overheads by encoding mul

tiple custom, instructions in a single RFU configuration. First, it detects/selects the data-flow 

sequences mapped to RFU potentially in a conventional programming code. The possible 

candidates are limited to arithmetic and logic instructions. Then, a translator converts the 

candidates into hardware description language. A logic synthesis tool verifies the timing and 

the possibility of mapping the function. This procedure is repeated many times to find suitable 

functions to the RFU. It also generates the corresponding configuration data. Finally, assem

ble/link and generate the executable. This procedure generates no change in a conventional 

program design flow. 

2.3 Memory systems with computations 

Various memory systems enhanced for computations to overcome the performance gap be

tween processor and memory systems have been presented in the last decade. Most of the 

computational memory system models attach logic to a conventional memory system (partic

ularly for DRAM) for a faster and easier communication between computing unit and memory 

system referred to as Merged DRAM Logic (MDL) unlike Intelligent Memory (IRAM) [24, 25]. 

IRAJVI integrates only Dynamic RAM (DRAM) into on-chip microprocessor to reduce the off-

chip bottleneck. This also gives a distribution of tasks by off-loading data-intensive applications 
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from the core processor to the memory systems. Another possible direction is to reconfigure 

memory itself for the resource utilization. One approach is presented in [42], which uses part 

of cache memory for different purposes of memory (such as buffers and look-up tables) on 

demand from applications. Reconfigurable cache addressing [43] is developed to provide data 

to computations without thrashing cache blocks. 

2.3.1 Active pages 

Active Pages [22] is a computation model which shifts data-intensive applications into the 

memory system. An implementation of Active Pages on RADram (Reconfigurable Architecture 

DRAM) is based on the integration of reconfigurable logic (FPGA-like logic) with DRAM to 

keep the processor at peak speeds by off-loading applications to the memory system. To achieve 

the proper transfer of computations between processor and memory system, Active Pages par

titions an application into processor-centric and memory-centric tasks. The processor-centric 

partitioning is for complex computations while the memory-centric is for for data manipulation 

and integer arithmetic. 

In the integration with a microprocessor, the interface to Active Pages is similar to a con

ventional virtual memory system. The processor controls Active Pages and communicates with 

them through a memory reference-like functions (like a series of memory-mapped operations) in 

a code sequence to write/read operands and results, set the particular pages, allocate/bind the 

group of pages for inter-page references. They are also synchronized by issuing synchronization 

variables. 

Active Pages can exploit high parallelism by executing applications in both processor and 

memory systems simultaneously. This is accomplished by loading simple, application-specific 

operations in the memory system. One problem is the fabrication of Merged DRAM Logic 

(MDL). This integration may result in the performance degradation of logic and poor density 

of DRAM. 
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2.3.2 FlexRAM 

FlexRAM architecture [23] places simple-compute engines in DRAM arrays to use as general 

purpose processing unit or otherwise as plain DRAM. In addition, to control and increase the 

usability of those engines a narrow-issue superscalar RISC core with small instruction and 

data caches is included on each memory chip based on Processor-In-Memory [41]. The RISC 

core also coordinates the compute engines with the host processor. Each chip has 64 memory 

arrays, which contain their own 32-bit fixed-point RISC engine. 

To initiate tasks in FlexRAM, the host processor should send a signal to the small RISC 

processors with a write to a special memory-mapped location. The host also passes the address 

of the routines to be executed in the memory system. The FlexRAM processor in memory 

informs the host processor the completion of the tasks. The host processor and the FlexRAM 

processor share the virtual memory. For the inter-chip network, each FlexRAM chip commu

nicates with other chips through an additional interconnection controlled by each FlexRAM 

processor. 

2.3.3 Reconfigurable caches 

Another type of reconfigurable cache design proposed in [42] enables cache SRAM arrays 

partitioned dynamically to be used for different processor activities that can benefit from extra 

resources instead of conventional cache memories. Some of the potential applications could 

use the partitions of reconfigurable cache as look-up tables/buffers for instruction reuse and 

hardware prefetching, or as compiler-controlled memory. 

The new reconfigurable cache structure is achieved by partitioning (isolating) the physical 

data bank for one way out of a set associative cache memory. The partitions for the other 

activities and normal cache operations can be addressed and differentiated by multiplexing 

the corresponding addresses and signals. A special register called cache status register tracks 

the number and size of the partitions, and controls the signals for appropriate partitions. 

Overall, the new cache organization requires few modifications to a conventional cache design 

with a small increase on cache access time (less than 6%). The detection mechanism used 
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to reconfigure the cache memory in a code sequence can be software or hardware controlled. 

When reconfiguring, the current data in the cache is moved between partitions or written back 

to lower memory levels, called cache scrubbing. They expect the frequency of cache scrubbing 

to be low (only once at the start of applications). 

2.3.4 Cache tiling 

A new cache architecture for windowed image processing is developed as cache tiling in [43]. 

Processing data in large structuring elements in small caches maps input data to the same cache 

locations. This results in the repeated replacement of data in the same location in a cache, 

called trashing. Predictable memory access patterns for image processing are exploited to 

eliminate the cache trashing. This is done by the linearization of data accesses in memory. 

The data access linearization is achieved using a fast address translator to exchange the address 

bits in a cache address. This increases the cache efficiency. It eventually improves the overall 

execution time by reducing the number of memory accesses. 

Cache tiling allows dramatic improvement in caching efficiency for small caches indepen

dent of compiler optimizations. Programs are not affected providing a transparent solution to 

improve caching. System code, compilers, or profiling programs can determine the blocking 

necessary for the best performance. 

2.4 SIMD extension in microprocessor 

The demand of multimedia-rich applications has been and will be dominating applications 

in PCs. Higher performance for these applications is preferred in general-purpose microproces

sors, which results in architectural extensions. The media applications are compute-intensive 

with localized recurring loop operations involving small native data types. In addition, they 

have large working sets and are streaming applications, which need an efficient data caching 

mechanism. These applications will get more benefit from well-structured/specialized units 

and instructions. 

This motivates a microarchitecture to incorporate SIMD (single-instruction, multiple-data) 
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extension to exploit the parallelism at instruction-level. To achieve instruction-level parallel 

execution, the microprocessor packs the small native data with at most 8 data elements for 

the same operation in one cycle with new media instructions (without special purpose proces

sor or dedicated hardware). The common operations in SIMD media instructions are arith

metic/logical operations, data movement/reorganization, and type conversion with the packed 

data types in 8(one-byte), 4(word), 2(doubleword), and l(quadword) data elements. The 

packed data operation is handled by saturating instructions which truncate the result in case 

of over/underflow. Since the multimedia data has less temporal locality, which implies that the 

data is processed once and discarded, it may cause the cache trashing problem. This motivates 

the use of special instructions to prefetch the data for faster processing and less interference 

with the cache behavior. 

By sharing the existing processor resources, the SIMD extensions are integrated with a 

minimal microarchitecture modification and a small amount of additional units. For exam

ple, the media instructions share the FP-registers with the floating-point instructions in Intel 

MMX [44]. Thus, the advantage of SIMD extension is to accelerate the media applications 

on general-purpose microprocessor without the aid of special purpose processor or dedicated 

hardware. Another main factor of the SIMD extension is the compatibility with the existing 

Instruction Set Architecture (ISA) and Operating Systems. 

There is a trade-off in the SIMD extension between embedded and exclusive architectural 

extension/support for the media applications. We describe the trade-off and difference in two 

microprocessors for the extension with respect to compatibility and additional resources in 

Section 2.4.1 for Intel MMX/SSE and Section 2.4.2 for PowerPC's AltiVec. 

2.4.1 Intel Pentium MMX/SSE ISA Extension for Multimedia 

Intel MMX/SSE [44, 45] has small modifications in the part of existing datapath and shares 

the common contexts - the core pipeline stages (datapath) - and switches the contexts between 

the SIMD extension and conventional architecture. 
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MMX: In MMX, no new states (such as register sets, control registers, and new condition 

codes) are added for the compatibility with existing IA (Intel Architecture) and OS. This makes 

the extension embedded to the Intel x86 architecture. The MMX media instructions share the 

existing 64-bit FP (Floating Point) register set as the MMX registers with FP instructions 

for the compatibility. The sharing restricts a code sequence to be partitioned into FP and 

MMX codes to make infrequent and simple context switching. Those two types of code should 

not be executed simultaneously. This results in the full IA compatibility. With the same 

techniques for FP interface to OS, such as FSAVE and FSTORE, the context switching is 

done by saving and restoring the data in the shared FP registers before executing FP/MMX 

data. The context switching from MMX to FP is performed by EMMS (empty MMX state) 

operation. Using FP reg tab bits (status of each register), FP data can be also protected from 

the MMX instructions. 

As mentioned above, MMX supports parallel operations on multiple small packed data 

elements with 57 specialized and enhanced instructions for media applications. MMX also 

has similar instructions like other microprocessor's extension described above. For instance, 

it supports packed shift instructions to realign the misaligned memory access similar to Al-

tiVec's permute instruction. Data transfer to memory for the packed data is done by the new 

special instructions (MOVQ: move quadword (64b), MOVD: move packed-word (32b)). MMX 

instructions use 8 MMX(FP) registers for packed data and 8 integer registers for loop control, 

addressing, etc.. 

The MMX instructions can be programmed using the assembly extension and optimized 

at compile-time. A code sequence may contain both conventional code and MMX code for 

applications to be executed conditionally on detection of MMX technology. 

SSE: Streaming SIMD Extension (SSE) has additional features which supplement MMX 

technology. SSE adds SIMD-FP execution units and 70 new media instructions for floating

point computations in media applications. For the streaming nature of data access from/to 

memory in media applications, SSE employs prefetching and streaming load/store instructions. 

It reduces the cache misses by keeping only basic/common data through the entire data set 
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in a cache memory. The different contexts and resources from the MMX technology are as 

follows. 

• new SIMD-FP instructions and media instructions. 

• new conversion instructions: from SIMD-FP to MMX for packed data and from scalar-FP 

to IA-32 integer for scalar data. 

• Adding a new state - SIMD-FP FU and eight 128-bit registers for SIMD-FP. 

This reduces the implementation complexity because of no sharing between contexts. 

There is no context switching between SIMD-FP and MMX/X87. Thus, SIMD-FP and 

MMX/X87 can be executed concurrently with separate exception handling. It also pro

vides wide and fast FP resources. The 128-bit processing (4-wide micro-instruction) 

is accomplished using two 64-bit micro-instructions (2-wide micro-instruction) for the 

compatibility without 128-bit datapath. 

» memory streaming instructions to prefetch instructions and wider bus systems to memory 

- which results in high memory throughput. 

• decoupling memory prefetch from retirement of subsequent instructions for the concur

rent execution of the computational stream and the prefetched memory access. 

Other major microprocessor vendors have introduced a similar SIMD architectural exten

sion, AMD 3DNOWÎ Technology [46], HP MAX-2 [47], and Sun Sparc's VIS [48] as well. 

2.4.2 AltiVec in PowerPC 

AltiVec [49] adds exclusive and independent datapaths, such as the 128-bit vector processing 

unit, from the existing microarchitecture to free up the core datapath for other conventional 

application sequence flows. This results in less context conflict/switching between the SIMD 

extension and conventional architecture compared to Intel's MMX/SSE. In addition, AltiVec 

allows x86 and SIMD extension instructions to be executed in parallel without interfering with 

each other. However, it occupies a larger portion of die area and needs more complicated 
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management due to two sub-states in one global state. The independent architectural support 

in AltiVec requires a different optimization algorithm at instruction-level from the conventional 

scalar ISA. 

AltiVec implements fully pipelined functional units which have low latency - one cycle per 

computation in most cases. Simple and compound (merged with two or three instructions) 

operations can be performed by two issues per cycle for ALU-class and permute-class instruc

tions. Other media instructions are similar to other SIMD extensions described in Section 2.4.1. 

AltiVec also minimizes the number of memory accesses using the special permute instruction 

for load/shift for misaligned memory accesses. 

The architectural support for the entire range of multimedia processing in AltiVec is 

achieved through the following additions - a large vector register file, full-range data-type 

support, four operand non-destructive instruction format, permute capability, powerful SIMD 

instruction set, and enhanced and adapted data-prefetch streams to the media applications. 

2.5 Cache memory 

In Section 2.5.1, we explain how a cache memory works and is organized in architecture 

and design. This describes the basic concept of conventional cache memories, such as address

ing, mapping, and policies. Then, we describe the characteristics of cache memory in media 

applications in Section 2.5.2. 

2.5.1 Cache memory architecture and design 

Cache is the first level of memory hierarchy in a microprocessor and a subset of lower 

memory hierarchy, such as main memory and hard disk. According to the principle of temporal 

and spatial locality, the cache memory contains data or instructions to be accessed by the 

processor activities in the near future. There are three types of cache organizations, direct-

mapped, set associative, and fully associative caches. In a direct mapped organization, each 

data block in lower-level memories can be placed only into one location in the cache. If a block 

can be placed anywhere in the cache, the cache is fully associative. If a block of lower-level 
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memories can be placed in a n number of locations in the cache, it is referred to as n-way set 

associative. Direct-mapped cache is just 1-way set associative and fully associative cache is 

n-way associative for n blocks. Since a cache memory maps a number of blocks in lower-level 

memories - more than the number of blocks in the cache, the blocks to be placed into a same 

location need to be identified. Each block is identified by an address tag, which is a part of 

block address. The tag is the number of block frames in a lower-level memory partitioned by 

the number of sets of cache memory (in direct mapped or one way). Another part of block 

address is an index that is used to select an appropriate set. The remaining part of an address 

is the block offset which can point out the desired data within a block. When a miss occurs, 

an appropriate block in the cache will be replaced by the replacement policy, such as random 

or Least-Recently-Used (LRU). Data can be written to a cache memory in two policies, write-

through or write-back. The write-through policy is commonly used in a multi-processor system 

for the memory consistency while the write-back policy is used in a uniprocessor system to 

reduce the off-chip memory traffic. 

There axe three categories of the causes of cache misses : compulsory, capacity and conflict. 

The first access of data will always be missed, called compulsory or first reference misses. This 

may often occur in a large cache memory due to the misses of all the blocks in the cache at 

the very beginning. A cache memory cannot contain all data in lower memories due to the 

lack of capacity. This results in blocks of data to be mapped to the same location in a cache 

memory. This conflict requires a replacement of block. If too many blocks are mapped to the 

same location, for example low-associativity, more conflict misses occur. 

Conventional cache memory consists of an array of S RAM-based memory cells, row/column 

decoders, multiplexers, sense amplifiers, and comparators depicted in Figure 2.4. Data and tag 

memory banks have the same organization described above with a different column size. The 

arrays consist of the storage cells (SRAM cell implemented using two cross-coupled inverters), 

horizontal wordlines, and vertical bitlines. A cache memory read operates as follows. The 

index and the block offset of an address are propagated to the row decoder and the column 

decoder, respectively. One signal from the row decoder selects one cell-row in the arrays for 



www.manaraa.com

21 

Word-lines 
Bit-lines 

Data Array Tag Array Address 

Column 
Decoder 

Comparator Output Driver 

Sense Amplifier Sense Amplifier 

Multiplexer Multiplexer 

Tag Index Block 
offset 

Hit or Miss Data 

Figure 2.4 Conventional Cache memory structure 

tag and data. The selected block is transfered through the bitlines. A desired data word in 

the block is selected by the column decoder through the multiplexer. For a faster propagation 

of data from the array, sense amplifiers are used at the end of multiplexers. The tag part is 

compared with the data from the tag array to check if the memory access is a hit or miss. 

If a hit occurs, the data is passed to the processor core. If a miss, the address is passed to 

the lower-level memory and the miss signal is issued. Therefore, there are several components 

which determine the cache access time - decoder, wordline, bitline, column multiplexor, sense 

amplifier, comparator, and select data output delays - as modeled by CACTI [50]. The access 

time of tag array is often higher than that of data array due to the additional tag comparison. 

A cache memory can work as a large number of input LUTs (like CLBs in FPGAs described 

in Section 2.1), for example, the addresses as input and the data words as logic functions. 

However, only one logic function is implemented in the cache memory because the LUT is 

controlled by one set of input-bits. While one large LUT could represent multiple stages of 

logic as one memory read by synthesizing a number of small LUTs (logic), it requires more 

effort from logic synthesis (and makes it less effective). 
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2.5.2 Cache memory characteristics in media applications 

Experiment results on cache effectiveness for media applications in [19, 20, 21, 43] show 

that a larger cache size hardly increases the performance in selected media applications due 

to streaming data nature and low temporal locality. However, data in media applications 

has higher spatial locality. In addition, all the data of multimedia applications cannot fit 

into a cache memory because the working sets of these applications are very large and are 

accessed in a streamed fashion. This directs the microprocessor to prefetch the streaming 

data without losing frequently used data in the cache [45]. Instead'of cacEiing the data on 

a processor, streaming load and store are more convenient and faster than the conventional 

caching strategy since streaming operations can remove the complicated cade operations for 

the memory hierarchy consistency. This results in a media processor to be a kind of vector 

processor. 

2.6 Superscalar microprocessor 

Superscalar microarchitectures [52, 53] issue and execute multiple instructions every cycle to 

exploit the instruction-level parallelism. An additional feature in a superscalaw microprocessor 

is an out-of-order issue and execution by resolving the control and data dependencies. A typical 

superscalar microprocessor depicted in Figure 2.5 operates as follows. Multiple instructions 

are fetched from the instruction cache every cycle in the fetch stage and then decoded in 

the dispatch stage. The artificial data dependency, such as write-after-writ*e and read-after-

write, is checked and resolved by the renaming registers in the dispatch stage and the data 

forwarding mechanism between the stages. The instructions are dispatched to the issuing 

reservation stations. In the centralized/distributed reservation stations, ths instructions are 

issued, then executed in a functional unit and, depending upon the operatiom of instructions, 

may access the memory. In the write-back stage, the instructions update "the computed or 

loaded data into the register file. The issue and execute can be done in out-o-f-order; however, 

the instructions are committed in-order in the commit stage to avoid wrong operations in the 

instruction stream by mis-speculation (for example, by branch mis-prediction) and to support 

precise exception handling. 
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Figure 2.5 A typical superscalar microprocessor 

2.7 Trends of future microprocessors 

In deep-submicron technology, we can have billions of transistors running at gigahertz 

frequencies [14, 15, 16]. This trend promises a lot of challenges and possibilities in micro

processor architecture and design. However, certain complexities and constraints inherent to 

deep-submicron technology will limit the performance of future microprocessors accordingly. 

Microprocessor performance has been improved mainly by technology scaling. As the 

feature size scales down, the device sizes at the transistor-level shrinks as well. This allows 

for more devices and a smaller clock cycle time on a chip. However, the interconnect delay, 

especially, for a global interconnect, does not scale down as much as the gate (device) delay 

because it remains unchanged due to the RC (resistance and capacitance) time constant (i.e., as 

feature size reduces, the capacitance of the wires also reduces, but the resistance increases due 

to the narrower width and thinner height in the wire.). This is the cause of the main physical 

constraint in microprocessor design for high performance. In addition, the power and cost will 

grow as the number of gates increases. Another behavioral constraint is program control and 

data dependencies in a code sequence, for example, branches and WAR (write-after-read) data 

dependencies, (even though more resources are available on the chip). 
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One temporary solution to the interconnect delay is to make the height of interconnect 

thicker to reduce the resistance and use copper metalization. However, this will not be suffi

cient in extremely small feature sizes. It also causes cross talk between adjacent wires, which 

increases wire capacitance and power consumption since they are very close due to feature size 

shrinkage. In the previous technology, we have used the RC time model to identify the charac

teristics of timing problems in design. Now, we need to consider inductance (electromagnetics) 

that is caused by the very narrow interconnect, which results in the RLC model. Due to the 

interconnect delay, the signal drive region (in which signal propagation can be reached within 

one clock cycle) will have less number of gates and relatively smaller area than larger feature 

size technology. For example, only 16% of die area (in billion transistors) could be reached 

within one cycle period (at 1.2 GHz) at 0.1 fim technology [26]. The impact on VLSI design 

is that the interconnect delay and complexity will be the dominating factor for delay, which 

motivates a new design paradigm and flow of microprocessor, such as interconnect-driven de

sign. For example, we need to avoid the congestion of wires in critical paths. This mismatch 

between gates and interconnects gives a gap between gate delay and propagation delay via 

interconnects. To match the wire delay to the faster gate delay, more driver buffers between 

segments of wire are necessary. For instance, long distance travel of a signal requires a large 

number of buffers and registers. However, adding more buffers and registers may not be a 

solution since the region (or the number of gates) that can be reached in one CPU clock cy

cle would be smaller and smaller as the feature size decreases. This is another factor which 

architecture needs to account for. 

The smaller feature size reduces the clock cycle time by reducing the corresponding ca

pacitance, which gives higher performance. Since the gate (logic) delay largely decreases, the 

clock overhead - setup time, clock to output delay, and clock skew - takes a significant fraction 

of the cycle time. Therefore, a very careful clock distribution across a chip and other circuit 

techniques to improve cycle times are necessary. Here are some of the possible techniques to 

improve the cycle time and reduce the effect of clock overhead: sense-amplifier-based, hybrid 

latch, semi-dynamic FFs, asynchronous logic to eliminate the global clock dependency, and 



www.manaraa.com

25 

dynamic logic to reduce and hide clock overhead with higher area/power. 

A deeply pipelined microarchitecture may not produce high performance due to the signif

icant fraction of clock overhead in pipeline cycle time. In addition to the clock overhead, the 

unexpected control dependencies and exceptions in a code may nullify the high throughput 

of pipeline by flushing all the current pipeline stages and executing all of them again. To 

increase the ILP (Instruction-Level Parallelism), we may increase the instruction window to 

be issued in one cycle. However, this also generates an additional overhead. For example, a 

larger instruction window needs more time to check and verify the content/name of registers 

and the result of execution in the renaming stage in a superscalar microprocessor. Both deeper 

pipeline and wider instruction window for higher ILP do not produce higher performance lin

early. Therefore, this requires an optimal number of pipeline stages and instruction window 

size. 

The capacity of computation and memory in a microprocessor is increasing dramatically 

in deep-submicron technology. However, this trend may restrict a highly localized placement 

of resources on a chip to reduce the interconnect delay and power dissipation because of the 

small signal drive region. As we observed above, the deeper pipeline and larger instruction 

window specially in deep-submicron era do not produce high performance due to the significant 

time/area overhead to support such a microarchitecture. This implies that a centralized pro

cessor control and execution may not be a good solution because it adds a huge interconnect 

delay. This indicates that the "locality" of complex architectures distributed over the die is an 

important design factor. 
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CHAPTER 3. PROBLEM STATEMENT 

Single-Instruction Multiple-Data (SIMD) extensions for multimedia applications are incor

porated in conventional microarchitecture with a small amount of architectural change and 

design modification. Thus, SIMD extensions integrate the SIMD parallel computation model 

at instruction-level to the current general-purpose processor. However, the main restriction of 

SIMD extensions are the compatibility with the existing Instruction Set Architecture (ISA) 

and Operating Systems (OS). This causes significant context switching and compiler assistance. 

Another problem is the balance between computing and memory bandwidth. To match the 

balance, a streamed load/store of data from/to memory is employed. Moreover, the additional 

resources to support the media instructions should be as minimal as possible for effective use 

of die size and removing frequency impact [45, 49]. 

This kind of fine-grained architectural support (instruction-level) for multimedia appli

cations needs less physical design effort and is easier to integrate into existing architecture. 

However, the fine-grained support may require low level optimizations at the instruction-level 

to exploit the benefits. For instance, a great deal of coding optimizations and significant com

piler assistance may be required. It also needs unnecessary architectural support because of the 

compatibility between the media instructions and the conventional instructions as described 

above. Due to the fine-grained support requirement, the control/execution units for the SIMD 

extensions may need to be centralized to the core processor. 

These shortcomings of fine-grained architectural support motivate exploration of coarse

grained architectural support (function-level) for media applications. For example, we may add 

function-level resources like ASICs to accelerate those applications. However, coarse-grained 

support requires highly customized units which are not cost-effective in a general-purpose 
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microprocessor. Instead, we have developed a dynamically reconfigurable functional cache 

(RFC), which works as memory or as LUT-based computing units. The RFC can support 

the coarse-grained architecture feature by mapping and executing an entire function with 

small additional logic and modifications in the existing architecture and design. One problem, 

however, is that the compile time optimization would have to operate at function-level. For 

example, we may not control or modify the function's behavior freely if the computing unit 

is already specialized to the functions. Conversely, the coarse-grained support could simplify 

coding and optimization for programmers and afford specialized/customized computing units 

for media applications in a general-purpose microprocessor. The simple compilation shown 

in Section 5.2.5 can be realized with pre-defined function calls in high-level languages to be 

performed by slightly modified load/store instructions. More pre-defined function calls may 

be added in the future through the co-design of hardware and software. Moreover, highly 

structured and intensive computation could be decoupled from the core processor to reduce 

the overheads of centralized architecture and design described in Section 2.7. 

SIMD multimedia applications with large working streamed data sets, in which data is 

used once and then discarded [45], can be accelerated by a specialized computing unit. A 

larger on-chip cache hardly helps these applications due to the streaming nature and lack of 

temporal locality as mentioned earlier. Since SIMD applications need less reconfiguration at 

run-time (by the nature of SIMD), the run-time reconfiguration does not affect the overall 

execution time significantly once we configure the RFC as a function unit. The Multiply-

and-Accumulation (MAC - core of FIR) and ROM-based Distributed Arithmetic (DA core 

of DCT/TDCT) functions are good examples of such SIMD applications. Such structured 

computations are more easily targeted for a reconfigurable functional cache especially within 

the low area and time overhead constraints. The LUT-based computing unit can be organized 

with unique and common configuration data. For instance, different types of computation 

using MAC and DA can be mapped to the RFC by changing contents of LUTs. 

In this thesis, we propose a microarchitecture as a combination of RISC-type and CISC-

type microarchitecture to support Adaptive Balanced Computing (ABC) through exploiting 
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Reconfigurable Functional Caches (RFCs). The basic concept of this combination is as follows. 

The interface and instructions are as simple as a RISC-type architecture while the operation is 

performed in multiple processes as a CISC-type architecture in a dense format of instruction. 

Thus, in the proposed architecture, the actual computation, which is initiated by the RISC-type 

instruction, is processed using specialized computing units as common primitives for DSP and 

multimedia applications. On demand from the applications, we simply add more functions to a 

conventional processor with with minimal amount of additional logic and time penalty. Unlike 

the SIMD extensions, the ABC microarchitecture involves minimal context switching between 

conventional instructions and the instructions supporting RFCs with a little modification of 

compiler and existing programs. This results in the combination of RISC-type instruction set 

with CISC-type computations. The proposed microarchitecture may also form a basis for a 

dynamic distributed microarchitecture. 
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CHAPTER 4. RECONFIGURABLE FUNCTIONAL CACHE (RFC) 

In this section, we describe how the proposed reconfigurable cache module architecture 

(RCMA) is organized and how it works. First, we introduce multi-bit output LUTs to be 

used in the reconfigurable functional cache (RFC) in Section 4.1. Second, we show constant 

coefficient multipliers using multi-bit output LUTs in Section 4.2. Third, we describe the core 

design of RFC architecture, such as how to partition the memory blocks and connect them, and 

how it operates as a cache memory and a special function unit in Section 4.3. In Section 4.4, we 

compare and estimate the cache access time of RFC with respect to memory cell array cache 

(with one memory cell array) and base array cache (with a number of partitioned memory 

cell arrays of a conventional cache structure for a faster access time). The configuration and 

scheduling of the module are described in Section 4.5. 

4.1 Multi-bit output LUTs 

In most FPGA architectures, a Look-up table (LUT) usually has four inputs and one output 

to keep the overall operation and routing efficient [33]. However, an S RAM-based single output 

LUT does not fit well with a cache memory architecture because of a large area overhead for the 

decoders in a cache with a large memory block size. Instead of using a single output LUT, we 

propose to use a structure with multi-bit output LUTs. Such LUTs produce multiple output 

bits for a single combination of inputs and are better suited for a cache than the single output 

LUTs. Since a multi-bit output LUT has the same inputs for all output bits, it is less flexible 

in implementing functions. However, this is rather inconsequential for our problem domain. A 

2-bit carry select adder and a 2-bit multiplier or a 4 x 2 constant coefficient multiplier (all need 

the same size, up to 6-bit output, of LUT) are depicted in Figure 4.1(a) and (b), respectively. 
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Figure 4.1 Multi-output LUTs : (a) A 2-bit adder : (b) A 2x2 or a 4x2 
constant coefficient multiplier 

If a multi-bit output LUT is large enough for a computation, no interconnection (for exam

ple, to propagate a carry for an adder) may be required since all possible outputs can be stored 

into the large memory. In addition, unlike a single output LUT, a multi-bit LUT requires only 

one decoder or a multiplexer with multiple inputs. Thus, the area for decoders reduces. How

ever, the overall memory requirement to realize a function increases. The required memory 

size increases exponentially with the number of inputs. Therefore, multi-bit LUTs may not 

be area-efficient in all situations. Also, in this case, the computing time may not reduce much 

due to the complex memory block and the increased capacitance on long bit lines for reading. 

Instead of using one large LUT, we show implementations of an 8-bit adder with a number 

of smaller multi-bit output LUTs in Figure 4.1. Figure 4.2(a) depicts an 8-bit adder consisting 

of two 9-input LUTs. Each 9-LUT has two 4-bit inputs, one 1-bit carry in, and a 5-bit output 

for a 4-bit addition. Thus, total memory requirement is 2 x 29 x 5 = 5120 bits. The carry is 

propagated to the next 9-LUT after the previous 4-bit addition in one LUT is completed (i.e. 
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a ripple carry). Since each LUT must be read sequentially, this adder takes a longer time to 

finish an addition. By employing the concept of carry select adder as depicted in Figure 4.2(b), 

a faster adder using 8-LUTs can be realized as the reading of the LUTs does not depend on 

the previous carry. In this case, the actual result of each 4-bit addition is selected using a 

carry propagation scheme. However, all the LUTs are read in parallel. The total time for the 

modified adder is the sum of the read time for one 8-LUT and the propagation time for two 

multiplexers. Thus, it is faster. This adder also requires the same amount of memory (i.e. 

4 x 28 x 5 = 5120 bits). 
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Figure 4.2 8bit adder using (a) two 9-LUTs ; (b) two 8-LUTs; (c) four 
4-LUTs 
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To make an area efficient adder, a 4-LUT with 6-bit outputs can be employed (Fig

ure 4.2(c)). The same carry propagation scheme as in Figure 4.2(b) is applied to the 4-LUTs 

to implement an 8-bit adder, but four 4-LUTs are used. The total time of the adder using 

the 4-LUTs might be higher than that using the 8-LUTs because it has twice the number 

of multiplexers to be propagated. However, the read time for a 4-LUT is faster than for an 

8-LUT since it has a smaller decoder and shorter data lines for memory reading. We, therefore, 

recommend the design in Figure 4.2(c). 

4.2 Constant coefficient multipliers using multi-bit output LUTs 

An 8x8 multiplier is presented using single-bit output LUTs in [54]. As mentioned above, 

the implementation in single-bit output LUTs may require larger area for each dedicated 

decoder to LUTs and the interconnects between LUTs than multi-bit LUTs. Using the multi-

bit output LUTs shown in the previous section, an area/time efficient constant coefficient 

multiplier can be implemented. Many memory cells reside on a cache memory. All of these 

memory cells can be converted to multi-output LUTs with an appropriate decoding scheme. 

Multi-bit output LUTs (4x8, 4x16, 4x32, 4x64, etc.) can reduce a significant amount of area 

by removing the interconnects between single-bit output LUTs and the decoders. Figure 4.3 

shows a hierarchical structure of 16x16 constant coefficient multiplier using multi-bit output 

LUTs. The hierarchical constant coefficient multipliers using multi-bit output LUTs may 

be less flexible than single-output LUTs with respect to the programmability in functions. 

However, the area and time for larger constant coefficient multipliers using multi-bit LUTs is 

linearly scaled with the number of bits. The reason for the linear scale is the variable width 

of multi-bit LUTs, which implements a large constant coefficient multiplier in one LUT. For 

example, 4x8, 4x16, 4x32, and 4x64 multipliers are implemented in 4-input LUT with the 

corresponding width of output. Therefore, the multi-bit LUTs fits well to the conventional 

cache structure with minimal area and time overhead. 
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4.3 Organization and operation of a reconfigurable cache module 

Since we target compute-intensive applications with a regular structure, such as DSP and 

image applications (FIR, DCT/IDCT, Cjpeg, Mpeg, etc.) as mentioned in Section 1, we first 

partition them at coarse-level into repeated basic computations. A function in each level 

can be implemented using the multi-bit output LUTs as described in Section 4.1. We only 

add pipeline registers to each coarse-level stage, which contains a number of LUTs, to make 

the entire function unit efficient. All these registers are enabled by the same global clock. 
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Therefore, a number of coarse-level computations can be performed in a pipelined fashion. 

Figure 4.4 shows a coarse template for a module. The cache can be viewed as a two-

dimensional matrix of LUTs. Each LUT has 16 rows to support 4-LUT function and as many 

multi-bits in each row as required to implement a particular function. In the function unit 

mode - in which the RFC works as a special function unit, the output of each row of LUTs is 

manipulated to become inputs for the next row of LUTs in a pipelined fashion. In the cache 

memory mode - in which the RFC works as a conventional cache memory, the least significant 

4 bits of the address lines are connected to the row decoders dedicated to each LUT. The rest 

of the address lines are connected to a decoder for the entire cache in the figure. In the cache 

memory mode, the LUTs take the 4-bit address as their inputs selected by the enable signal 

for the memory mode. Therefore, regardless of the value of the upper bits in the address, 

the dedicated row decoder selects a word line in each row of LUTs. This means one word is 

selected in each LUT row according to the least significant 4 bits. 

Each LUT thus produces as many bits as the width of the LUT. These are local outputs of 

the LUTs. These outputs are available on the local bit lines of each LUT row. For a normal 

cache operation, one of the local outputs needs to become the global output of the cache. This 

selection is made based on the decoding of the remaining (n — 4) address bits decoded by the 

higher-bit decoder. The local outputs of the selected row of LUTs are connected to the global 

bit lines. The cache output is carried on the global bit lines as shown in Figure 4.4. Thus, 

output of any row of LUTs can be read/written as a memory block through global lines. We 

propose that these global lines be implemented using an additional metal layer. The global bit 

lines are the same as the bit lines in a normal cache. 

Both decodings can be done in parallel. After a row is selected by both the decoders, one 

word is selected through a column decoder at the end of the global bit line as in a normal 

cache operation. In the figure, the tag part of a cache is not shown and a direct-mapped 

cache is assumed for the module. However, the concept of reconfigurable cache can be easily 

extended to any set-associativity cache because the tag logic is independent of the function 

unit's operations. 
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4.4 Access time for cache operations 

We compare the access times for the reconfigurable functional cache (RFC) with the access 

time for a fixed cache module of comparable size. The base fixed cache module from which 

a reconfigurable cache is derived comes in two flavors. The first is a memory cell-only array 

cache with one address decoder and one data array. The second is a parallel decoding cache 

with segmented-bit lines and partitioned-word lines. The segmented-bit lines are divided every 

16 cache blocks and enabled by the decoder for the high-order address bits with switches like 

the global bit lines in Figure 4.4. The partitioned-word lines are divided into the decoding 

lines from the the high-order address decoder and local word lines in a sub-memory blocks 

from each dedicated decoder in Figure 4.4. The local word lines select one block in every 16 

cache blocks and one of them is selected by the high-order address decoder. The base array 

cache is shown in Figure 4.5. 

The memory-cell only array cache has single-level decoding leading to low area and slow 

access time. An RFC based on this design reduces access time by introducing hierarchical 

decoding at a cost of large area overhead. A base array cache structure, however, already 

incorporates access time advantage of hierarchical decoding, and hence also needs more area. 

An RFC based on this design, hence, shows a slight degradation in access time with a very 

small area overhead. We analyze the RFC access time for cache operations in terms of address 

decoding time and word/bit line propagation time. Other components of access time, such 

as sense amplifier and column decoding, do not differ over the two cache organizations. The 

access times for an RFC based on a memory cell array cache and the base array cache are 

estimated below, respectively. 

Memory cell array cache. The cache with the reconfigurable structure may have 

a faster address decoder than a memory cell array cache, which contains one main address 

decoder and a bunch of adjacent memory cells. Since each LUT, with its own row decoder for 

addressing in the reconfigurable module, is much smaller than a large synthesized memory cell 

array in a conventional cache, the decoding time of a LUT is faster than the decoding time of 
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a large cache. As mentioned earlier, since two decoders can decode in parallel, possible word 

lines in a cache according to the least significant 4 bits may be ready to be read or written 

before the main row decoder even finishes decoding an address. The assumption here is that 

the main decoder has a larger number of address bits. Since the two decoding operations are 

independent, the delay of decoders is the maximum of two decoding times in the reconfigurable 

module. If there are many LUTs which take the same lower 4 bits in the module, we have to 

consider the increased capacitance due to the fan-out of the lower address bits. If the delay of 

decoding is higher, we may need a larger driver for the least significant 4 bits to reduce the 

delay. However, the drivers will not affect the size of the reconfigurable module much as we 

can put a driver into the space saved by reducing the size of the high-order address decoder. 

Each bit line in a normal cache is replaced by the global line in the proposed architecture. 

Since the global line does not drive any gates (only the drain connections of the switches placed 

in an interleaved fashion - every sixteen cache blocks), the reconfigurable module does not have 

a higher delay due to the global lines. Although the global bit line in RFC is stretched by 

inserting the interconnection between LUT rows, the number of drains - dominant capacitance 

in the bit line - is reduced by a factor of 16. Thus, the segmented global bit line in the 

RFC has less capacitance than the bit line of a conventional cache. Additionally, the local 

bit line discharge can be done in parallel with the higher address bit decoding and word line 

propagation. This indicates that a data signal from a memory cell through the bit line in the 

module is propagated faster than a normal cache. 

The word line in the reconfigurable cache is longer than in a memory cell array cache due 

to additional row decoders for each LUT. Therefore, the propagation delay of a signal from 

the higher-bit decoder through the word line in the module is slightly higher than in a normal 

cache. However, the sum of two propagation times, word and bit lines, is smaller than in a 

conventional cache since the local bit line in RC starts discharging before the word line finishes 

the propagation. 

As mentioned earlier, other delays are similar in both the memory cell array cache and the 

RFC. In summary, the cache access time of RFC is faster in decoding time and bit/word line 
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propagation time. Therefore, the RFC is faster than a conventional memory cell array cache 

in read and write cache operations. 

To estimate the access time, we used a cache simulator, CACTI with 0.8fim technology [50]. 

They partitioned the access time into five parts, Decoder, Word Une, Bit line, Sense Amplifier, 

and Data out driver (for column decoder) for tag and data parts. We modified the simulator 

slightly to suit our structure, such as the parallel decoding and longer lines in the data array. 

We computed the access time of data part for 8KB cache with 128 bits block size, which is 

used to implement our example functions in Section 6. Table 4.1 shows the access time of 

a normal cache and the reconfigurable module. Due to the reason described above, it turns 

out that the overall decoding time has decreased and the delays of word and bit lines have 

increased. Note that CACTI simulator implemented in software cannot take account into the 

overlapped propagation time between the local and global word lines as described above. If 

the* overlapped time is included, the sum of propagation times for word and bit lines would 

be smaller than the time shown in the table. However, since we reduce the decoding time 

significantly, the total cache access time, sum of the five factors, in the reconfigurable module 

is less than in a normal cache. 

Table 4.1 Comparison of access time for an 8KB cache with 128bit-wide 
block 

Normal 
Cache (ns) 

RFC 
Module (ns) 

Comments 

Decoder 2.88 Max(2.38, 2.28) = 2.38 decreased 
Word line 1.14 1.24 increased 
Bit fine 0.46 0.55 increased 
Sense Amplifier 0.58 0.58 same 
Data out driver 0.60 0.60 same 
Total time 5.66 5.35 decreased 

Base array cache. Recall that the base array cache performs parallel decoding with 

segmented-bit and partitioned-word lines. Cache implementations may have a similar or more 

efficient parallel decoding structure with segmented bit lines and partitioned word lines (vertical 

partition in HP PA-RISC [55] and horizontal partition in Divided Word Line cache architec
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ture [56]). Unlike the RFC cache organization with vertical and horizontal partitions, some 

partitioned caches might employ only the vertical partition of cache blocks for less capaci

tance on the segmented bit lines because the stretched word line causes more delay than a 

synthesized sub-block. However, if we consider the word line propagation time with the dis

charging time of local bit lines, the horizontal partition with the dedicated decoders to each 

LUT (sub-memory module) can make the word line propagation faster. As described earlier, 

discharging the local bit line can start with charging the word line in RFC. If we partition 

a cache block only vertically for segmented bit lines, one bit line of each bit line pair in a 

cache block cannot be discharged unless the entire word line is fully charged (decoded) from 

the higher address-bit decoder. Although the entire stretched word line propagation in RFC is 

slightly slower due to insertion of the dedicated LUT decoders, the parallel discharge/charge 

of the local bit line/word line compensates the stretched word line (or makes it even faster). 

Therefore, we compare the access time for RFC to the base array cache partitioned vertically 

and horizontally with the segmented bit lines and partitioned word Unes. 
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The access time of reconfigurable cache is slightly slower than that of a plain cache due to 

the stretched bit lines caused by the interconnections between LUT rows in the RFC. Based 

on the SPICE model parameters for 0.5yrni technology in [57] the capacitance of the stretched 

bit line in the RFC is increased by 11% over the segmented bit line in the caches. Since the bit 

line access time constitutes 8% of the overall cache access time (estimated in [50]), the access 

time overhead due to the stretched line is about 1% of the overall cache access time. Since the 

word line propagation time, the decoding time, and other components in the RFC are similar 

to those in the base array cache, the overall cache access time in the RFC is slower than the 

base array cache by about 1%. The area overheads for FIR and DCT/IDCT function modules 

are given in Section 6.2 with respect to both cache models (memory cell array cache and base 

array cache). Using those faster decoding caches to implement reconfigurable modules, we can 

easily convert memory sub-blocks into LUTs without adding significant dedicated logic, such 

as decoders and address lines. Therefore, we build the reconfigurable caches into the caches 

based on the parallel decoding architecture. 

4.5 Configuration and scheduling 

In Section 4.5.1, we explain how to store and place the configuration data in a cache 

memory based on a conventional cache architecture. Then, in Section 4.5.2, we describe a way 

to load the configuration data initially and to load partial configuration data at run-time. The 

scheduling and controlling data flow for RFC is described in Section 4.5.3. The conditions for 

the efficient number and size of LUTs to build an RFC is described in Section 4.5.4. 

4.5.1 Configuration of a computing unit 

To reduce the complexity of column decoding in normal cache memory, data words are 

stored in an interleaved fashion within a block. The distance between two consecutive bits of 

a word is equal to the number of words in a block. However for LUT application, we need to 

use multiple bits for a single LUT. Due to the interleaved placement of data words in a cache 

block, we cannot write one entry of a multi-bit output LUT by writing one word in a cache. 
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This implies that we can only write one bit into a LUT if the width of LUT is the same as the 

number of words in a cache block or we can write two bits simultaneously into a LUT if the 

width of LUT is half the number of words in a cache block. For example, if a 4-LUT produces 

an n bit-wide output for a function and the number of words in a cache block is n, 16 xn words 

- 16 for the number of entries and n for the width of LUT output (one bit from each word) -

are required to be written to the LUT in the cache. However, since other LUTs placed in the 

same cache blocks (LUT row) can also be programmed simultaneously, no more than 16xn 

words are required to fill up the contents of all LUTs in the entire LUT row. In addition, if 

the width of a LUT is larger than the number of words in a cache block, multi-bit writing is 

performed into each LUT in a LUT row (as mentioned above). This restricts the width of the 

multi-bit output LUT to be an integral multiple of the number of words in a cache block. This 

allows for an efficient reconfiguration of all LUTs in a row. The number of LUTs in a column 

- placed vertically - for a pipeline stage may also be required to be a power of 2. Since all 

cache structures are based on a power of 2, it is more convenient to make all LUT parameters 

(length and width) a power of 2 to avoid a complicated controller and an arbitrary address 

generator. This may result in under-utilization of memory. However, the idle memory blocks 

for LUTs are not likely to be a problem when the module is used as a function unit due to 

availability of sufficient memory size in a cache. 

4.5.2 Initial/partial reconfiguration 

Initial configuration converts a cache into a specific function unit by writing all the entries 

of LUTs in the cache. The configuration data to program a cache into a function unit may be 

either available in an on-chip cache or an off-chip memory. Loading time for the configuration 

data in the latter case will be larger than in the former case. The configuration data may 

be prefetched by the host processor to reduce the loading time from off-chip memory. Using 

normal cache operations, multiple writes of configuration data to the LUTs are easily achieved. 

An RFC operating as a function unit can also be partially reconfigured at run-time using 

write operations to the cache. When a partial reconfiguration occurs, the function unit must 
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wait for the reconfiguration to complete before feeding the inputs. Since computation data 

(input and output) and reconfiguration data (contents of LUTs) for a function unit share the 

global lines for data buses, we cannot perform both computing and partial reconfiguration at 

the same time. It is possible to perform both computations and reconfigurations simultaneously 

if we have separate data lines for computation data and configuration data. To process a large 

number of data elements, we do not need to reconfigure often. For example, in a Convolution 

application with 256 taps, we need to reconfigure a module implementing 8 taps 32 times. 

The time to configure initially from the normal cache memory mode to a function unit mode 

or to reconfigure a part of a function unit depends on the number of cycles to write words into a 

cache. Initial configuration time dominates the total configuration/reconfiguration time. The 

partial reconfiguration at run-time usually loads a small part of configuration. The targeted 

SIMD applications require small initial and partial configurations and hence configuration has 

a small affect on overall execution time. The configuration time in our simulation (including 

initial and partial) for FIR and DCT with various function parameters are shown in Section 7.3. 

With a smaller number of data elements, the configuration time dominates the total execution 

time. However, the total execution time is not dominated by the configuration time when the 

number of input data elements exceeds a threshold (which is true for SIMD applications). 

4.5.3 Scheduling and controlling data flow 

A cache module can also be used to implement a function with a larger number of stages 

than what can be realized by the reconfigurable functional cache in one pass. In this case, we 

divide the function into multiple steps. That is, S stages required for a function can be split 

into sets, Si, S%,..., Sjt, such that each set Si can be realized by a cache module. If all S/s are 

similar, then we can adapt data caching as described in [58] to store the partial results of the 

previous stage as input for the processing by the next configuration. The 'similar' here means 

that the LUT contents may change, but the interconnection between stages is the same. This 

happens, for example, in Convolution applications. By changing the contents of LUTs, we can 

convert a stage in the cache block to carry out the operation of a different set of pipeline stages. 
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In general, MuItipIy-and-AccumuIation (MAC) is a very common function in many DSP and 

image processing problems. The MAC for FIR and DCT/IDCT is implemented in this thesis 

in two ways using multiplier-adder and distributed arithmetic unit as shown in Section 6. The 

applications computing with MAC will have the same interconnection for all the computing 

stages with different LUT contents. 

In data caching scheme, we place all input data in a cache and process it for the first set of 

stages, Si- Following this, the cache module is configured for stages, So- We have to store the 

intermediate results from the current set of stages into another cache and then reload them 

for the next set of computations. To provide data without any stall, two other cache modules 

may be used to store input and intermediate data, respectively. These modules are address-

mapped to provide efficient data caching for intermediate results. The role of the two caches 

can be swapped during the next step when a computation requires the intermediate results as 

inputs and generates another set of intermediate results. If both an input and an intermediate 

result are required by all the computations, the two caches cannot be swapped. The two 

caches must be large enough to hold input and intermediate results, respectively. Moreover, 

the reconfigurable functional cache must be able to accept an input and an intermediate result 

as its inputs. 

4.5.4 Number and size of LUTs in RFC 

The following conditions are used to determine the efficient number and size of LUTs with 

the parameters described in Table 4.2. The size and number of LUTs must be a power of 2 for 

a convenient control of partitioned memory blocks. By determining the most efficient number 

of LUTs in a row, the area overhead for the dedicated decoders to the LUTs could be reduced. 

• Conditioixl: 

total # of bits/line > (# of LUTs) x (# of bits required per decoded entry in a LUT) 

=> Nb/W x Nw/B > x x a 
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• Conditions: 

# LUTs required for a function in a row < th^L^tho/TuT 

x n„, xNa /B  o rm<n^ 
— mxiV, ti f / B  

These conditions imply that we can write m < NbJ.w configuration bits into each LUT in a 

row by writing one word into the cache. Also, the actual number of LUTs implemented in a 

row is equal to 

Table 4.2 Parameters to determine the number and size of LUTs 

a Number of bits required in a row of LUT 
X  Number of LUTs required in a LUT row 
m Number of bits to be written into a LUT by one word (power of 2) 

^b/w Number of bits per word 
Nw/ B  Number of words per cache line 
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CHAPTER 5. ABC MICROPROCESSOR 

5.1 Overview of microprocessor 

In a reconfigurable cache module architecture (RCMA), we assume that the data cache is 

physically partitioned into n cache modules. Some of these cache modules are dedicated caches. 

The rest are reconfigurable modules. A processor is likely to have 256KB to 1MB Level-1 data 

cache within the next 5-10 years. Each cache module in our design is 8KB giving us 32 - 128 

cache modules. A reconfigurable cache module can behave as a regular cache module or as a 

special purpose function unit. 

HOST 

D-Cache 
(Fixed) 

Cn/ 

FP Mult, 
(reconfig) 

RCm/ 

DCT/IDCT 
(reconfig) 

RC2/ 

Encryption 
(reconfig) 

RC3/ 

FIR Filter 
(reconfig) 

RCl/ 

Figure 5.1 Overview of a processor with multiple reconfigurable cache 
modules 

Figure 5.1 shows the overview of the processor with reconfigurable functional caches (RFCs). 

In an extreme case, these n cache modules can provide an n-way set associative cache, m 

modules out of n cache modules are reconfigurable. Whenever one of these cache modules 

is converted into a computing unit, the associativity of the cache drops or vice versa. Alter

natively, the address space can be partitioned dynamically between the active cache modules 
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with the use of address bound registers to specify the cached address range. RFC 1, RFC2, 

RFC3,..., RFCm in Figure 5.1 can be converted to function units, for example, to carry out 

functions such as FIR filter, DCT/IDCT (MPEG encoding/decoding function), encryption, 

and general computation unit like a floating point multiplier, respectively. When some subset 

of the m RFCs are used as function units, the other caches continue to operate as memory 

cache units as usual. It is also possible to configure some cache modules to become data input 

and output buffers for a function unit. The RFCs are configured by the processor in response 

to special instructions. 

In this thesis, we propose that each cache module be designed to be reconfigurable into 

one of several specific function units. Since each reconfigurable module can be converted into 

a small set of functions with similar communication needs, interconnections for each RFC are 

fixed to be a super set of the communication needs of the supported functions. The advantages 

of fixed interconnection are as follows. The fixed interconnection is less complex, takes less 

area, and allows faster communication than a programmable interconnection. Moreover, our 

experience demonstrates the feasibility of merging several functions into one RFC with fixed 

interconnections. More discussion with respect to the fixed set of applications supported is 

presented in Section 7.4. 

5.2 Microarchitecture with RFCs 

We integrate the reconfigurable functional cache (RFC) described in Section 4 into a super

scalar processor architecture to build the adaptive balanced computing (ABC) microprocessor 

with the use of RFC as a conventional data cache storage or a specialized computing unit on 

demand. First, we show a partitioned cache memory to provide a larger number of memory 

modules in Section 5.2.1. Second, the cache organization with RFCs is described in 5.2.2. 

Third, we describe a new instruction set to utilize the RFCs in Section 5.2.3. Finally, we show 

the proposed microarchitecture to exploit the RFCs and compiling requirements with the new 

instructions in Section 5.2.4 and 5.2.5, respectively. 
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5.2.1 Partitioned cache design 

When one of the cache memory modules implemented as an RFC is reconfigured as a 

computing unit, the capacity of cache memory reduces by the fraction of t he module to be 

configured. To reduce the effect of the reduction in memory storage capacitry, we partitioned 

a cache memory into a number of smaller-sized memory modules. Then, eacEh. smaller module 

could be used to implement an RFC. 

To partition a large cache memory, we apply a similar address decoding organization (de

sign) in each cache module for an RFC as shown in Chapter 4. The decoder- for each module 

is divided further to make a hierarchical decoding in higher address bits. TThis gives sixteen 

smaller-sized cache modules which can be built as an RFC. When one of the modules is con

figured as a computing unit, it should be excluded from the cache operations- This is done by 

disabling the dedicated decoder to the specific data array through ANDing the decoding line 

from the 2-to-4 decoder and an RFC flag for computing mode. More details: are given in the 

following sections. 
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Figure 5.2 Partitioned cache for multiple modules 
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5.2.2 Cache organization with reconfigurable functional caches 

We employ a multiple-way set associative data cache memory in a RISC superscalar micro

processor to support the RFCs. Modules in a set associative cache can be built as RFCs. Each 

RFC can be configured to a specialized computing function or used as a normal cache memory 

module. If the size of a cache module for one-way in a multiple-way set associativity is large 

enough to be mapped to more than one RFC, we partition them into multiple smaller-sized 

cache modules as described in Section 5.2.1. 

Two possible cache organizations with the address mapping including RFCs are shown in 

Figure 5.3. To prevent the memory address space from becoming non-cacheable (they cannot 

be stored in L-l data cache due to removal of the blocks from the cache operations), not all of 

the cache modules are configured as computing units at the same time in Figure 5.3(a). RFCs 

can be implemented with a minimal cache modification in this organization. In addition, 

one module can be easily excluded from the cache operation because the cache partition is 

already provided in a multiple-way set associative cache memory. The cache memory capacity 

is reduced when an RFC converts it into a computing unit. This results in a full dynamic 

associativity of cache memory when configuring. For example, if one out of four cache modules 

is configured to a computing unit, only 8-way blocks in all sets are left to map the address space 

in lower-level memory. This may cause more cache misses, which results in degradation of the 

performance. However, this can be compensated adequately by accelerating the computations. 

A further partition of cache memory within a module (way) is shown in Figure 5.3(b). The 

structure of further cache partition is described in Section 5.2.1. The size of each module is 

based on the minimal size of RFC - 8KB as shown in Chapter 4. In this organization, when 

an RFC converts into a computing unit, the sets containing the RFC are less-cacheable (low 

associativity compared to other sets) while the other sets retain the same caching capacity. This 

scheme retains more storage than the full dynamic associativity organization of Figure 5.3(a) 

(each way corresponding to RFC) by converting a smaller portion of cache memory. This could 

reduce the impact of the RFC reconfiguration when the RFC works as a computing unit with 

the partial dynamic associativity. 



www.manaraa.com

49 

4-way set associative cache address 
mapping 

wayO way I way2 way3 

RFC_0 RFC_2 RFC_I RFC_3 
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Figure 5.3 Cache organizations and address mapping with RFCs (a) 4 (b) 
16 cache modules 
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5.2.3 Instructions to utilize RFC 

It takes three steps to perform a computation in RFC. First, the RFC is configured as 

a specialized computing unit by loading the pre-defined configuration data into the specific 

cache memory (RFC). Second, the input data to be processed is loaded to the RFC. Third, 

the output data from the RFC is stored back into the memory. All these steps require only 

load/store class of instructions. To configure an RFC and then execute computations in the 

R F C  i n  a  c o n v e n t i o n a l  m i c r o a r c h i t e c t u r e  ( R I S C  p r o c e s s o r ) ,  n e w  i n s t r u c t i o n s  -  n a m e d  r f c  

class of instructions - are added with a new opcode. The format of rfc instructions is the 

same as the conventional load/store instructions except for the target register field. The 

rfc load/store instructions need not have the target register field in the microcode as is the 

case for conventional load/store instructions. This format provides an address for access to 

memory hierarchy. 

Three types of instructions, rfcJoad^conf, rfcJoadSn, rfcstore-out, and initialize / 

terminate instructions are added. The detailed format of the new class is described in Fig

ure 5.4, where we show only word-data type load/store instructions (lw/sw). The instruction 

description is mostly self-explanatory. Individual instruction operations are explained briefly 

later in Section 5.2.4. Note that the function identifier (FID) field chooses the module that 

will be configured for a specific function. In this thesis, we use word-data type rfc instruc

tions for the description purpose. For different types of data (for example, half-word or byte, 

etc.), the same instruction format in the figure can be used. Also, note that rfcJLw-conf-end 

and rfcjpartialset also perform a loading operation in addition to setting the mode. The 

rfcJw-conf start instruction is used for a special setting in a RFC, such as use of multiple 

input buffers (i.e. input and intermediate data). We assume that there are only four functions, 

but the concept can be easily extended. The special flags can be used for a two-level function 

identification of RFCs if more than four RFCs are implemented. For example, the flag with 

rfcJw-conf start sets a function class followed by sub-FED. 



www.manaraa.com

51 

31 26 25 21 20 19 18 16 15 0 

New opcode Rs FID CMD Offest 

FID (function identifier) : 4 different functions to be implemented into RFCs 

00 - Function 0 

01 - Function 1 

10 - Function 2 

11 - Function 3 

CMD (command) : type of operations 

000 - start configuration and set the special state register and other required flags 

001 - load configuration data (from reserved address space) 

010 - end of loading configuration data and set to execution mode 

011 - terminate an RFC use for computation and return back to the cache mode 

100 - set flags and load input data to be processed for the computation 

101 - load 2nd set of input data from memory hierarchy if applicable 

110 - store output data to memory hierarchy 

111 - set for partial reconfiguration process at the end of current step 

RFC instructions for load-word based on the CMD 

000 rfcJw-conf-start F^class special-flags 
001 rfcJw-conf fid offset($r) 
010 rfc-lw_conf-end fid oflset($r) 
011 rfc_terminate fid 
100 rfc-lw-inl fid offset ($r) 
101 rfcJw_in2 fid offset ($r) 
110 rfc_sw-Out fid offset($r) 
111 rfc_partial_set fid offset($r) 

Figure 5.4 rfc instructions for loading and storing "word" type of data 
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5.2.4 Mechanism for the computation, in RFC 

5.2.4.1 Overall microarchitecture 

With out-of-order issue in a superscalar processor, any instruction which does not have a 

dependency on preceding instructions can be issued and executed at any time if the required 

resources are available. In addition, in a speculative execution, the next instruction stream 

in a code sequence can be executed speculatively. The out-of-order issue and execution may 

a l s o  h a p p e n  a m o n g  r f c  i n s t r u c t i o n s  b e c a u s e  t h e r e  i s  n o  e x p l i c i t  d e p e n d e n c y  b e t w e e n  r f c  

instructions. However, the rfcJwJn( 1 or 2) and rfcswjout instructions must not be issued 

and executed until the RFC has been configured. From the microarchitecture viewpoint, a 

speculative execution mechanism may issue the rfc instructions in any order. To avoid this 

type of exception, we add a special RFC state register. In the register, two bits are reserved 

for each RFC module. The two-bit RFC state information is organized as follows. 

• 00 : NON-RFC/END-RFC - normal mode; the RFC is not performing a computation, 

but functioning as a normal cache. rfcJw-conf jstart checks this to make sure that no 

execution in a designated RFC is performed and rfcJterminate sets this to notify the 

end of an execution 

• 01 : CONF - configuration mode; rfcJw-jconf start sets this to notify the configuration 

mode being performed and the following rfcJwsonf instructions load configuration 

data with checking the configuration status 

• 10 : CONF_DONE/START-RFC_EXE - end of configuration; rfcJuijconf -end sets this 

to notify the configuration DONE and rfcJwJn checks this to make sure that no more 

configuration is being performed 

• 11 : RFCJEXE - execution mode; the first rfcJLw.in sets this to notify the execution 

being performed and the following rfcJ.wJ.ri and rfcswJn instructions process the 

input and output data 
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The state transition is controlled by the r f c  instructions as depicted in Figure 5.5. All 

the rfc instructions must access the RFC state register according to the FED field in the 

microcode and then check the current state with its CMD field. If it is an allowed state, the rf c 

instructions can be issued. Otherwise, the rfc instructions are stalled until the corresponding 

state is resolved. 

5.2.4.2 Configuration 

The configuration of RFC from a cache module simply implies loading all the contents of 

LUTs required to construct a computing unit. A normal cache read with a small modification 

directs specific data into the designated cache line. The required configuration data for RFCs 

resides in a reserved memory (address) space in main memory. The configuration is loaded into 

main memory when the system boots up. The rfcJw-conf start instruction sets the corre

sponding RFC state register. The subsequent rfcJw-conf instructions load the configuration 

lines to the specific RFC without changing the RFC state. 

Since the configuration data is held in main memory, the data accesses would be cache 

misses if the same configuration had not been loaded previously. This cache miss will replace 

the current clean/dirty lines in a write-back cache. Thus, we do not require any separate cache 

flushing. A simple modification of cache replacement mechanism, such as LRU, is required to 

replace the data in the specific cache module (RFC) with the loaded configuration data in a set-

associative cache organization. The modified LRU scheme, which is set by rfcJw-conf start, 

Figure 5.5 State transition for the RFC status 

rfc_tenninate 

rfc_lw_conf_end 
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replaces lines in the RFC only if rfcJw-conf accesses in CONF mode. The configuration 

data in RFC should not be modified by other load/store instructions except the rfcdw-conf 

instructions if the RFC state is not '00'. An additional operation in the modified LRU mecha

nism protects the configuration data by removing the lines in RFC from the replacement line 

list in LRU when conventional load/store instructions access the cache. Thus, the proposed 

LRU scheme consists of two operations, one for rfcJw-conf to replace data in the specific 

RFC and the other for other load/store instructions (including rfcJw-inl/2) to access the 

rest of cache memory. 

A conventional load/store instruction may see a hit in the RFC block during the recon

figuration as old data, which have not been replaced yet, may still reside. This is acceptable 

since all old data will eventually be replaced by configuration data. If a computation is being 

performed in RFC {RFC-EXE mode), the read/write access to RFC must be blocked (using 

the state bits). Using the proposed LRU modification, the set associativity of cache memory is 

changed dynamically depending upon the use of RFC. During the configuration, one module 

out of multiple modules in a set associative cache is frozen out of cache operations. A write 

operation to RFC is prevented by disabling the write enable in the RFC during the execution 

mode. 

5.2.4.3 Execution stage 

The new instructions are decoded in the dispatch stage according to their specification 

described in Section 5.2.3. Since the format of new instructions is similar to that of conventional 

load/store instructions, the complexity of the additional decoding logic is not significant. The 

rfcJwJ.nl/2 instruction, which loads input data to an RFC computing unit, is decoupled 

from LSQ (Load Store Queue) and queued into an input buffer (IBUP) dedicated to each 

RFC. This allows the rfcJwJnl/2 instructions to be independent of the LSQ and dispatch 

of more rfcswjout instructions. In addition, the decoupled EBUF provides data in-order to 

the RFC computing unit. The r/c load/store instructions also process the input/output data 

independently in separate buffers. Otherwise, these instructions pass/receive data to/from 
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RFC serially in one buffer. The effective address for the rfcJwJnl/2 instruction is calculated 

using the existing datapath and passed to the corresponding instruction in IBUF, not to 

LSQ. The details of IBUF are described later. If no slot in IBUF is available, the following 

instructions including conventional instructions fetched from memory are stalled until IBUF is 

again available. Otherwise, a complex mechanism may be required for a decoupled fetch queue 

between rfc load instructions and other instructions. 

By queueing the rfcJLwJ.nl/2 instructions into IBUF in-order, the input data to be pro

cessed is provided to RFC in the correct order. This is like a reorder buffer mechanism for 

input data of the RFC unit to remove the impact of out-of-order execution. The input data 

from memory to the IBUF can be supplied out-of-order as in the conventional LSQ. Note that 

instead of providing IBUF with the data in writeback stage, the data may be directly loaded 

into the matched address slot in IBUF from data buses. Some applications may require two 

separate inputs. For example, in an FIR filter with many taps, an input data stream may be 

processed by a fixed number of taps and partial results are stored. In the second iteration, 

input and partial results are loaded (using rfcJwJnl and rfcJwJn2, respectively) and pro

cessed together. That is why we provide two IBUFs. The computation in RFC is processed 

when both data elements are available. 

The mechanism to support out-of-order update (load) of input data in IBUF dedicated to 

RFC is as follows. When the rfc instructions are issued and executed, the FID and CMD 

fields (5 bits) are propagated with the address to be accessed together. Each IBUF attached 

to RFCs keeps snooping these five signals and compares them with its own function identifier 

(FID) and the corresponding command (loading rfc input data only). If the FID and CMD 

match with one of the IBUFs and the cache access is a read, the loaded data is directly queued 

into the matched address slot in IBUF with the current address accessed. This mechanism is 

very similar to the conventional LSQ. Whenever the head slot in IBUF is updated (ready), it 

is provided to the RFC for the computation. This ensures that data to RFC is delivered in 

a correct order. The proposed mechanism is shown in Figure 5.6 (a) and (b). As shown, the 

mechanism requires the FED and CMD lines to be added to the bus. 
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After a computation is completed in the RFC, the output data is queued into an output 

buffer (OBUF) as shown in Figure 5.6(b). The OBUF is a simple FIFO register file since the 

queued data is already in-order. The presence of OBUF may reduce the stall time for the 

rfcsw-out instruction ready in mm m it: stage due to the latency of computation in RFC. In 

addition, it also reduces the stall time for the computation in RFC. For example, if OBUF is 

not present, the ready output to be stored blocks the following processed input data and the 

whole computing unit until the output is resolved by the rfcsw-out instruction in commit 

stage, and vice-versa. 
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Figure 5.6 (a) Overview of I/O buffers organization: (b) I/O buffers to 
dedicated to RFC 

The rfcJterminate instruction sets the RFC state into the non-RFC mode after finishing 

an entire computation. This setting should be done in the commit stage to avoid mis-execution 

of pending rfc instructions. If the same computation within the current configuration may be 

performed in the near future, the RFC state (RFC-EXE) is not changed. 

The rfcJLw-inl/2 instructions do not affect any state when a mis-prediction/speculation 
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or an exception occurs because the rfcJw-inl/2 instructions do not modify the precise state 

in microarchitecture. If an exception or mis-speculation occurs, the only repair necessary is 

to flush the instructions in IBUF as done in a conventional LSQ. In addition, all the com

puted data in RFC is resolved by the rfcsw-out instructions. This implies that wrong data 

elements, which should not bs processed (such as mis-speculation), will not be stored because 

the rfcsw-out instructions are committed in-order. 

5.2.4.4 Partial reconfiguration, process 

A whole function in an application may not be mapped to an RFC as a computing unit at 

one time. For instance, in an FIR filter, if the number of taps for the filtering coefficients is 

larger than the number of physical taps implemented in an RFC, we configure the first set of 

taps in the RFC and then reconfigure it partially for the next set of coefficients at run-time. 

In partial reconfiguration, not all of LUTs in the RFC need to be reconfigured since only the 

coefficients are changed. This can be achieved using a cache write operation in rfcJw-conf. 

To direct the partial configuration data to a specific RFC, we use the rfcJwjzanf instruction 

described in Section 5.2.3 as we do for initial loading configuration. However, the RFC state 

must be changed to CONF mode and the modified LRU mechanism is set from RFC -EXE 

to CONF mode to replace the specific block in a set associativity as well. The rfc-partialset 

instruction shown in Section 5.2.3 sets the RFC state register and all the required flags as 

rfcJw-conf start does. This mechanism protects the current configuration to be retained data 

in the RFC for the partial reconfiguration by setting the RFC state from RFC -EXE to CONF 

mode directly. Note that we assume a correct program will not try to write in the same address 

space where the configuration is stored. The following rfcJw-conf instructions reconfigure 

the designated RFC as done for the initial configuration. Again, the partial configuration data 

resides on main memory with a reserved address space which maps to the same area in the 

cache. 
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5.2.4.5 Forwarding mechanism between LSQ and I/OBUF 

Store instructions may need to forward the data to subsequent load instructions for correct 

operations. Otherwise, the old data is accessed. The forwarding mechanism, between load 

instructions is not necessary because loads do not modify the data. Forwarding data between 

store instructions is not required because the subsequent stores have the latest data. However, 

for the faster execution by removing the read access to memory, a forwarding mechanism may 

be used. 

The r f c  store instructions need to forward data to both conventional and r f c  load instruc

tions if the addresses match. Since the rfc stores are queued and processed in LSQ, the same 

forwarding mechanism between conventional load and store instructions is used for forwarding 

data from the rfc stores to load instructions. The addresses are compared before the load 

instructions are issued to access the memory. The only difference is that the data to be for

warded by rfc stores resides in OBUF. Thus, additional data buses are required between LSQ 

and OBUF. 

Similarly, the r f c  load instructions queued into IBUF may receive data from the conven

tional store instructions in LSQ. Since only preceding stores forward data to the subsequent 

loads and IBUF and LSQ are separated, the identification of the sequence order between store 

and rfc load instructions is required. To identify the order, an instruction sequence number is 

tagged to the instructions in both LSQ and IBUF. Using the tag number, the store instruction 

compare its address with only the addresses of the subsequent rfc load instructions. It also 

requires additional buses between LSQ and IBUF. The tag numbers can be used to identify 

the instructions to be flushed in IBUF as well when a mis-prediction occurs. 

5.2.4.6 Forwarding mechanism between IBUF and OBUF 

In some RFC computations, i.e. HR, a calculated value in the RFC currently is reused for 

the computation. Thus, a mechanism is required to forward data from OBUF to IBUF. The 

addresses in LSQ for store instructions must be compared with the address of a load instruction 

to see if there is a match and the data forwarding is required. If so, the rfc load instruction 
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should be tagged in IBUF. When the rfc stores instructions store the data from OBUF to the 

memory (or cache), the IBUF may also read the corresponding data from the bus directly by 

checking the tags, which is similar to the mechanism for loading data from memory to IBUF 

as described in Section 5.2.4.3. This ensures that the rfc load instructions do not receive old 

data. 

5.2.5 Compiling requirements for the specialized computations 

The availability of RFCs allows programmers to use specialized computing units with simple 

pre-defined and code-optimized function calls (e.g. FIRQ, DCTQ, etc.). The pre-defined 

mapping configuration data and parameter information are included into the compiler libraries. 

It simplifies programming and more function calls can be added to the compiler as and where 

they are developed. Figure 5.7 shows a code sequence for a generic pre-defined function call 

to use RFCs. Note that it uses unrolling of rfcJLw.inl/2 and rfcsw-out instructions 4 to 8 

times to allow faster pipelining of data in the IBUF and storage of results. The number of 

unrolled rfc instructions is determined by the size of IBUF. 
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START: 

CONFIG: 

load_conf: 

conf-end: 

EXECUTE: 

loadjstore: 

END: 

rfcJw_conf_start 0 0 # set the RFC status 
# as CONF 
# F_class 0 
# no additional IBUF 

addiu $r5, $0 0 # loop index 

sit $r4, Sr5 (no of iterations) # number of sets 
bne Sr4, $0 load.conf 
j conf_end 

rfcJw-conf FED offset(Srl) # load configuration data 
# from memory to RFC 

addiu Sri, Sri (cache line size) # address increment 
# (cache line size) 

addiu Sr5, Sr5 1 # loop index increment 
j CONFIG 

rfc_lw_conf_end FID ofFset(Srl) # set the RFC status 
# as CONF done 

addiu Sr5, SO 0 # loop index 

sit Sr4, $r5 (no of iterations) # number of sets 
bne Sr4, SO load-store 
j END 

rfcJwJn FID offset(Sr2) # load the input data 
rfcJwJn FID offset(Sr2) # from memory 
rfc_lw_in FID offset(Sr2) 
rfcJwJn FID offset(Sr2) 

rfc-sw-out FID offset(Sr3) # store the output data 
rfc_sw_out FID offset(Sr3) # to memory 
rfc-SW_out FID offset(Sr3) 
rfc_sw_out FID offset(Sr3) 

addiu Sr2, Sr2 32 # address increment 
addiu Sr3, Sr3 32 # address increment 

# (one word) 
addiu $r5, Sr5 1 # loop index increment 
j EXECUTE 

rfc_terminate # set the RFC status 
# as EXE done 

Figure 5.7 A basic frame code using EIFC as specialized computing units 
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CHAPTER 6. EXAMPLES OF RFC 

We have experimented with two applications, Convolution and DCT/IDCT. In this chapter, 

we describe how we map the applications into the reconfigurable functional cache (RFC). 

First, we map each application into RFC separately, then we merge two applications into a 

single RFC. We also compare the overall area of separated RFCs and a combined RFC in 

Section 6.2. Next, we compare the execution time of these applications on RFCs with the 

execution time on General-Purpose Processor (GPP) in Section 6.4. The main advantage of 

the RFCs is on-chip processing, which implies faster processing time, no off-chip bottlenecks, 

and the balance/utilization of on-chip caches between storage and computation. 

6.1 Functions to be mapped to RFC 

6.1.1 Convolution (FIR filter) 

An RFC configured to perform a Convolution function is presented in this section. The 

number of pipeline stages for the Convolution in an RFC depends upon the size of the cache 

to be converted. Our simulation is based on an 8KB size cache with 128 bits per block/16-bit 

wide words implementing 4-LUTs with 16-bit output. A conventional Convolution algorithm 

(FIR) is shown in Equation 6.1. 

M 
y(n) = ̂ 2 w(k)x{n — k) (6.1) 

k=o 

One stage of Convolution consists of a multiplier and an adder. In our example, each stage 

is implemented by an 8-bit constant coefficient multiplier and a 24-bit adder to accumulate up 

to 256 taps in Figure 6.1(a). The input data is double pipelined in one stage for the appropriate 

c o m p u t a t i o n  [ 3 0 ] .  A n  8 x 8  c o n s t a n t  c o e f f i c i e n t  m u l t i p l i e r  c a n  b e  i m p l e m e n t e d  u s i n g  t w o  4 x 8  
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constant coefficient multipliers and a 12-bit adder with, appropriate connections [54]. A 4 x 8 

constant coefficient multiplier is implemented using 12 4-LUTs with single output from each 

LUT on FPGAs. In our implementation, we split the 12-bit wide LUT contents of a 4 x 8 

conventional constant coefficient multiplier into two 16-bit output 4-LUTs (part 1, 2) with 

6-bit wide multiple outputs for a lower routing complexity of the interconnections as shown in 

Figure 6.1 (b). The first six bits of each content are stored in LUT part 1 while the last six 

bits are stored in LUT part 2 to realize a 4 x 8 constant multiplier. 
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Figure 6.1 (a) One stage of Convolution; (b) Array of LUTs for one stage 
of Convolution 
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The concept of a carry select adder is employed for an addition using the LUTs described 

in Section 4.1. Therefore, we need a 6-bit wide result for a 2-bit addition, three bits when 

carry-in=0 and three bits when carry-in=l from a LUT. An n-bit adder can be implemented 

using such LUTs and the carry propagation scheme. The output is selected based on the 

input carry. 

One stage of Convolution can be implemented with 22 LUTs. To keep the number of LUT 

rows a power of two for cache operation, we put 6 LUTs in each LUT row and have 4 LUT 

rows to use 22 (out of 32) required LUTs. The final placement of LUTs is shown in Figure 6.1 

(b). A few LUTs in the figure are not used for the computation. In Figure 6.1(b), pipeline 

registers and interconnections for LUTs are not shown. For an 8KB RFC, we have 32 rows of 

LUT which can be used to implement 8 taps of the Convolution algorithm. 

6.1.2 DCT/IDCT (MPEG encoding/decoding) 

In this section, we show a reconfigurable cache module performing the DCT/IDCT function, 

which is the most effective transform technique for image and video processing [60, 61, 65, 68]. 

To be able to merge the Convolution and DCT/IDCT functions into the same cache, we have 

implemented DCT/IDCT within the number of LUTs in the Convolution cache module. 

Given an input block x{i,j), the N x N 2-dimensional DCT/IDCT in [68] is defined as 

X{u,v) = jjC(u)C(v) ]T x cos^ ^ 2NVn (6 '2) 
1  t=0 j=o 

<i, j )  =  I L E  C(u)C(v)X(u, v ) x (6.3) 
iV u=0 u=0 

where x(i,j) (i, j = 0, • • •, N—1) is a matrix of the pixel data, X(u,v) (u, v = 0, • • •, N — 1)  

is a matrix of the transformed coefficients, and 0(0) = C(u) = C(v) = 1 if u, u # 0. 

This N x N 2-D cosine transform can be partitioned into two N point 1-D transforms. 

To complete a 2-D DCT, two 1-D DCT/IDCT processes are performed sequentially with an 

intermediate storage. By exploiting a fast algorithm (the symmetry property) presented in 

[59, 68], anArxiV matrix multiplication for the N x N 2-D cosine transform defined in (6.2) 
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and (6.3) can be partitioned into two x T matrix multiplications of 1-D DCT/IDCT with 

additions/subtractions before the DCT process and after the IDCT process. 

The 8-point DCT with the symmetry property can be written in a matrix form as shown 

below. 

*0 A A A A XQ + X7 

_ 1 B C -C -B XI +16 

X4 
~~ 2 A -A -A A X2 +r 5  

*6 C B B -C X3 +z 4  

D E F G XQ — XJ 

1 E G -D -F XI — XE 
_ 2 F -D -G E X2 -XS 

G F E -D X3 - XI 

(6.4) 

(6.5) 

'  1 6 '  
„ 3tt 
'16' ' 16 : 

XQ A B A C  XQ 

XI _ 1 A C -A -B x2 

Z2 
~~ 2 A -C -A B XI 

A -B A -C XQ 

x7 A B A C  XQ 

x6 _ 1 A C -A -B x2 

Xs ~ 2 1 0
 

1 to
 

x4 A -B A -C x6 

1 
+ 2 

is written as follows. 

D E F G 

E -G -D -F 

F -D -G E 

G -F E -D 

D E F G 

E —G —D —F 

F -D -G E 

G -F E -D 

According to the fast algorithm, the number of multiplications in (6.2) and (6.3) can be halved. 

However, 4^ adders and y subtracters are needed before the DCT process and after the IDCT 

process. 

— cos^, where Xi 

The 8-point IDCT 

-

xt 
x3 

(6.6) 
x3 

(6.6) 
X5 

X7 J 

Xz 
(6.7) 

Xz 
(6.7) 

X5 

X7 
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The 1-D DCT/IDCT process is a Multiply-and-Accumulate (MAC), which can be repre

sented as y = OiXi- Although a MAC is already built in the RFC in 6.1.1, the distributed 

arithmetic [66, 68] is employed in the RFC instead for the DCT/IDCT function. This avoids 

the run-time reconfiguration of coefficients required for the coefficient multiplier in FIR. Using 

this scheme, once the coefficients are configured into the RFC, no more run-time reconfigura

tion is required. 

The inner product of each 1-D transform (MAC) can be represented as follows. 

N-1 yv-i wd-i 
y = 53 aiXi = Y2 °t(-Z>io + 53 6»>2_r) 

i=0 i=0 r= 1 

Wd-1 rw-i 
= £ 

r=l 
^ * ûi&ii 

. t=0 

jV-1 

2 r + 52 ak(~bio) (6-8) 
i=0 

where X{ — —i_1 bir2~r with two's complement form of an input word length Wd and at-

(z = 0, 1, 2,..., JV-1) are the weighted cosine factors. According to (6.8), the multiplication with 

the coefficients can be performed with a ROM containing 2'v pre-calculated partial products 

in a bit-serial fashion. The inner product computes the sums of partial products 

corresponding to the same order bit from all the input elements processed in the current 

stage using a set of serial shift registers. For the output of the inner product, one more shift 

register is required. Therefore, one processing element (PE) contains a ROM and a shift 

accumulator for the partial summations of corresponding data bit order. In this configuration, 

each inner product is completed in the number of clock cycles that is the same as the word 

length of input. With N PEs, TV-point DCT can be completed in parallel. Using the symmetry 

property presented in (6.4), (6.5), (6.6), and (6.7), the contents of a ROM can be reduced by 

2t. However, it requires two sets of y adders and y subtracters before the DCT process and 

after the IDCT process. 

Due to the coding efficiency and the implementation complexity, a block size of 8 x 8 pixels 

is commonly used in image processing [60]. We, therefore, have implemented an 8 x 8 2-D 

DCT/IDCT function unit by two sequential 1-D transform processes. In addition, the width 

of input elements is eight bits. We also select the word length of the coefficients to be 16 bits 

for the accuracy of the DCT computation. 
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One PE with conventional architecture is depicted in Figure 6.2(a). One PE implemented in 

the RFC is depicted in Figure 6.2(b). In the figure, the ROM is placed in the middle of a LUT 

row to reduce the number of routing tracks. In the given cache size, 8KB, eight such PEs and 

the additional adders/subtracters for pre/post-processing can be implemented. To make the 

DCT/IDCT implementation compatible with the Convolution function unit, we place 4-LUTs 

with 16-bit output in an 8KB sized cache. Only 20 LUT rows (16 for PEs and 4 for pre/post

processing) out of 32 LUT row in the 8KB cache are used for the implementation. However, 

the LUTs not used in this function still remain in the RFC module for the compatibility 

with the other functions. Since each PE requires a LUT as a 16x16 ROM and a 16-bit 

adder, no significant consideration of the LUT placement is necessary in this design unlike the 

implementation of Convolution. 

Bit-Serial Input 
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Figure 6.2 (a) DCT/IDCT processing element; (b) Array of LUTs for 
DCT/IDCT processing element with the input registers 
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A 16-bit carry select adder is configured as a shift accumulator with the registers not 

shown in the figure for the self-accumulation in each PE. According to Equation (6.8), only 

one subtraction is necessary. This is done by the same adder which can keep both addition 

and subtraction configurations in 12-bit data width (6 bits for adder and 6 bits for subtracter). 

The adder-subtracter shares the same input and output with the adder without requiring any 

extra logic. However, an extra control signal is needed to enable the subtraction. The addi

tional adders and subtracters for the pre/post-processing are implemented using the scheme 

for adder-subtracter described above since each pair of addition/subtraction needs the same 

input elements. In addition, the 1-bit shift of accumulated data can be easily done by appro

priate connections from the registers to the input data lines of the adder. The input/output 

shift registers are added only to the in/out port of the actual DCT/IDCT function unit after 

the pre-processing unit and before the post-processing unit. This means only one set of shift 

registers are necessary since all the PEs compute using 4 bits out of the same set of input data 

in each transform of a row or a column as shown in (6.4)-(6.7). 

In the actual implementation, we add one more set of shift registers to remove any delay 

due to loading or storing in/out data from other memories. All the loading/writing back 

from/to the storage can be overlapped with the computation cycle time in PEs by appropriate 

multiplexing of the dual shift registers. Adding shift registers allows in/out data to be ready to 

be processed and written immediately after the previous computation, without any idle time. 

The controller described in Section 4.5.3 handles and controls the computation procedure. Once 

the host processor passes the required information to the controller, all the control signals are 

sent by the controller. 

The computation process of an 8 x 8 2-D DCT is as follows. The function unit on the RFC 

computes the 1-D transform for an entire row by broadcasting a set of input data after the 

pre-addition/subtraction process to eight PEs in eight time units in a bit serial fashion (i.e. 

a half set of data to four PEs and another half set of data to other four PEs). A set of bit 

serial output from eight PEs is carried out to the output shift registers in the same fashion. 

The eight global bit lines described in Section 4.3 are used as input and output data lines. 
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To avoid the delay of the global lines for the cache operations due to additional switches, we 

can place other routing tracks into the space between global bit lines, such as feedthrough. 

Since we have already added one additional metal layer for the global bit lines, this layer can 

be used to route additional lines. This implies that we have enough vertical routing tracks in 

this architecture. This computation is repeated 8 times, once for each row, for 8 rows of an 

8x8 image. In the mean time during each computation, the next set of input data is fetched 

in another set of input registers and the previous output data is written into an additional 

memory. All the intermediate results from the 1-D transform must be stored in a memory and 

then loaded for the second 1-D transform which performs the same computations to complete a 

2-D transform. Therefore, 2-D DCT/IDCT is computed with two additional memories similar 

to the Convolution function. A data flow diagram of the computation process for 8x8 2-D 

DCT is depicted in Figure 6.3. 

1,2,3,4 for 1-D transform 
5,6,7,8 for 1-D transform to complete 2-D transform 
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Figure 6.3 Data flow of the computation process for 8 x 8 2-D DCT trans
form 

Several other opportunities for reconfigurable units exist in this architecture as described 

below. 

• The flexible use of the shift registers working as normal registers for the main on-chip 

ALU which is an approach similar to [9]. Since the registers are not an integral part of 

the cache operations, it is easy to convert them. 
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# Although the width of coefficients in the ROM configuration is fixed at 16 bits in this 

example, the coefficient width is flexible in this architecture between one and sixteen. 

Moreover, the width of input elements can be easily extended by adding more shift 

registers without modifying the current configuration. 

• The emulation of a ROM in the RFC does not imply fixed processing coefficients. Hence, 

different sets of coefficient values can be loaded using the conventional cache operation 

for the other distributed arithmetic operations. 

6.1.3 Reconfigurable cache merged with multi-context configurations 

Since we implement Convolution and DCT/IDCT in the same RFC framework, we can 

merge the two functions into one RFC. With the concept of multi-context configurations 

mapped into multi-bit output LUTs and individual interconnections, the RFC can be con

verted to either of two function units. The placement of LUTs is shown in Figure 6.4. 
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Figure 6.4 An array of LUTs for the combined RFC with Convolution and 
DCT/IDCT 

A combined RFC with two functions takes less area than the sum of the areas of two 

individual function units because the additional area cost is due to interconnections only. The 

logic is absorbed in the available cache memory based LUTs. The required interconnection for 

each function is placed independently together in the combined RFC, which implies that there 

is no sharing of interconnection between the two functions. As described in Section 5.1, we 
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use fixed interconnection since it takes less area and propagation time than the programmable 

interconnection. The actual area of the RFC framework (base array cache) and interconnection 

is shown in the last part of Section 6.2. 

6.2 Area 

To measure the actual area overhead of cache array-only for both memory cell array cache 

and base array cache, we experimented with layouts of the RFC with only Convolution, only 

DCT/IDCT, and with both functions. As we compare the access time of RFC for cache 

operations in two cache models, the memory cell array cache and the base array cache in 

Section 4.4, the area overheads are estimated with respect to the two cache models. 

Figure 6.5 represents one stage of the Convolution unit in the RFC described above. The 

pipeline registers are not shown in the figure. According to our layout experiment, the total area 

of the reconfigurable module including the pipeline registers with an FIR filter, which supports 

up to 256 taps, is 1.53/1.12 times the area of data array in the memory cell array cache/the 

base array cache without other logic components, respectively (described in Section 4.4). To 

see the exact area overhead of memory array-only, We consider the area overhead of RFC with 

respect to the base area of only the data cache array, which does not include the additional 

cache logic — specifically, row/column decoders, tag/status-bit part, and sense amplifiers. The 

percentage of RFC area overhead would appear to be even lower, had we inflated the base area 

by including the area for these logic components. However, the actual area overhead remains 

the same. 

Figure 6.5 A possible layout of RFC for one stage of the Convolution 
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For the DCT/IDCT function unit on an RFC, the required interconnection is fixed just 

as in the Convolution cache module. In the DCT/IDCT function, no complicated routing is 

required and the number of LUT rows in the RFC is less than that for the FIR filter while the 

number of registers is higher. Thus, according to our experimental layout for DCT/IDCT, the 

total area of the DCT/IDCT module is 1.48/1.09 times the area of data array in the memory 

cell array cache/the base array cache, respectively, including the accumulating registers and 

the shift register at the in/out port. Again, those basic units, such as row/column decoders, 

tag/status-bit part, and sense amplifiers, are not included in this comparison as mentioned 

above. 

In Table 6.1 and Table 6.2, the area overhead of FIR and DCT/IDCT in the RFC is 

compared with designs for these functions previously reported in the literature. The designs 

we compare within this thesis are from the literature of the last 10 years. We compare our 

result to the best-area implementations in the literature. We have estimated the area for an 

RFC in A2 by scaling À from 0.25(j.m to 12fj,m (some of them are not shown in the tables). 

As we explained in Section 4.4, the area overhead for RFC is also estimated with respect to 

the two base cache architectures. For the memory cell array cache, the area overhead includes 

the dedicated decoders, switches, RFC-interconnect, and the required registers while the area 

overhead in the base array cache with the parallel decoding and segmented bit/word lines 

consists of only the interconnect and the registers. Some of these designs include pads area. 

For a fair comparison, only the core sizes are listed in both tables by estimating the axea of the 

core part of the entire chips. Also, the area overhead of RFC in the tables is the area of only 

additional units to support the functions implemented. In other words, the original cache area 

is not included in the area overhead. The core area of design in [64] shown here is estimated 

in [62]. 

In Table 6.2, the core area of 1-D IDCT in design [66] excludes I/O pads and buffer axea. 

We scale the reported total area by the proportion of the reported core area to the reported 

total area. The area of FIR and DCT/IDCT in the RFC includes all the required registers 

such as pipeline registers for FIR and accumulating/shift registers for DCT/IDCT. 
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Table 6.1 Area comparison of FIR Filters and RFC overhead for FIR 

Yoshino et al. [62] Hatamian-Rao [63] Ishikawa et ai. [64] 

Number of Taps 64 40 15,19 
Coefficient 

Word-length 
14 bits 
(fixed) 

12 bits 
(programmable) 

8 bits 
(fixed) 

Technology 0.8fim BiCMOS 1.2fivn 
Core Area 49 mm2 22 mm2 80 mm2 

FIR Filter in the RFC (area overhead of the cache) 

Number of Taps 256 taps (with 8 physical taps) 
Coefficient Word-length 8 bits 

Technology 0.8 fim 0.9 [xm 1.2fj,m 
Area Overhead1 11.28 mm2 14.28 mm2 25.39 mm2 

Area Overhead2 3.45 mm2 4.37 mm2 7.77 mm2 

% for area overhead1 53% of area for array-only of the memory cell array cache 
% for area overhead2 12% of area for array-only of the base array cache 

1 Area overhead of the "only" memory cell array 
2 Area overhead of interconnections and registers regarding the "only" base cache array 
described in Section 4.4 

Table 6.2 Area comparison of DCT/IDCT chips and RC overhead for 
DCT/IDCT 

Masaki et al. [66] Madisettii-Willson [67] Uramoto et al. [68] 

Function 1-D IDCT 8x8 DCT/IDCT 8x8 DCT/IDCT 
Technology 0.6 fim 0.8 (J.TTI 0.8 fj.m 
Core Area 9.4 mm2 10 mm2 21.21 mm2 

8x8 DCT/IDCT in RC (area overhead of cache) 

Technology 0.6y^m O.Sfim 
Area Overhead1 5.9 mm2 10.5 mm2 

Area Overhead2 1.51 mm2 2.68 mm2 

% for area overhead1 48% of area for array-only of the memory cell array cache 
% for area overhead2 9% of area for array-only of the base array cache 

1 Area overhead of the "only" memory cell array 
2 Area overhead of interconnections and registers regarding the "only" base cache array 
described in Section 4.4 
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Most of the reported FIR filter designs have fixed coefficients with as many physical MACs 

as the number of taps. Although coefficients are programmable in [63], only 40 taps can be 

supported for various types of filter. Besides, the time taken for run-time reconfiguration in a 

serial fashion is high due to the limited number of pins. The time of run-time reconfiguration 

of coefficients in the RFC is much smaller because multiple LUT writes are achieved per cache 

write operation. For a fair comparison, the area per tap can be calculated roughly in each 

filter by dividing the core area by the number of taps. According to the area per tap, the area 

of a tap in the RFC is larger than others with respect to the memory cell array cache while 

the area per tap in the RFC is smaller than others with respect to the base array cache area 

overhead. Although only 8 taps are implemented physically in the RFC, the FIR cache module 

can support up to 256 taps with fast configuration not visible to the application. 

Since some of the filters have a different word length, we compare the axea of 16x16 

constant coefficient multiplier and 32-bit accumulator (MAC) implemented in the RFC with 

the same word length of MAC as presented in [69, 70]. Since constant coefficient multipliers are 

used in most DSP and multimedia applications, we implemented a 16x16 constant coefficient 

multiplier, one MAC stage for FIR. The MAC area is estimated based on the number of LUT 

rows used and interconnection in RFC. In our experimental layout, the MAC (16x16) area in 

the RFC is less than or equal to two times the area of one MAC stage of Convolution (8x8) in 

the RFC. This area is smaller than that of the existing MACs as shown in Table 6.3 in both 

cases. This implies that an FIR filter with 16-bit word-length can be easily implemented in 

the RFC with a similar axea overhead for four physical taps. However, it can still support up 

to 256 taps. 

Note that the designs reported in [62] and [63] implement FIR with 14-bit and 12-bit 

coefficients, respectively, while we report RFC area overhead for an 8-bit coefficient design. It 

is hard to develop a precise analytical model for the area parameterized by the number of bits 

in a coefficient. Some parts (such as multiplier) may scale non-lineaxly with the number of 

coefficient bits depending on the algorithm. Some parts would scale sub-linearly such as control 

and global routing. For an approximate comparison, we assume that the area scales linearly 
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Table 6.3 Area comparison of Multiplier-Accumulator's and RC overhead 
for one MAC stage 

Izumikawai et al. [69] Lu-Samueli [70] 

Size of In/Out 16bxl6b/32bits 12bxl2b/27bits 
Technology 0.25 fj.m l.O^m 

Area 0.55 mm2 (core) 9.30 mm2 (chip) 

MAC in the RC (area overhead) 

Size of In/Out 16bxl6b/32bits 
Technology 0.25 fim 1.0 fj.m 

Area Overhead1 0.28 mm2 4.41 mm2 

Area Overhead2 0.08 mm2 1.35 mm2 

% for area overhead1 51% of area for array-only of the memory cell array cache 
% for area overhead2 11% of area for array-only of the base array cache 

1 Area overhead of the "only" memory cell array 
2 Area overhead of interconnections and registers regarding the "only" base cache array 
described in Section 4.4 

in coefficient width. Hence, the 8-bit version of [62] would take area 28mm2 (^ x 49mm2) 

and for [63] the area would be 14.7mm2 x 22mm2), which are comparable to the RFC area 

overhead for FIR. The main advantage of RFC for FIR is the reconfigurability which allows the 

RFC-FIR to have a virtually infinite number of taps unlike other customized FIR chips. The 

number of taps is also configured with a faster reconfiguration time. We, therefore, conclude 

that the area per tap for RFC is comparable to that of the customized FIR chips. 

The area of the previous designs for DCT/IDCT in Table 6.2 is larger than the proposed 

DCT/IDCT cache module except [67] with respect to area overhead of the memory cell array 

cache. The 2-D DCT/IDCT functions are implemented with a similar procedure as in the 

DCT/IDCT cache module - two 1-D DCT steps. Since the DCT function is implemented 

using a hardwired multiplier in [67], the area is smaller than the cache module with respect to 

the area overhead of the memory cell array cache. However, the area overhead with respect 

to the base array cache is smaller than all the previous designs shown in the table. The DCT 

function in [68] has two 1-D DCT units, so the area of one 1-D DCT unit is roughly half of 
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the overall area which is still larger than the RFC overhead. 

In the combined multi-function. RFC, each function needs a fixed interconnection topology. 

Therefore, the total area of interconnection occupied by the two functions in the combined RFC 

is the sum of the individual interconnection areas for Convolution and DCT/IDCT". According 

to our experimental layout of the combined cache, the total area of the RFC with two functions 

is 1.63/1.21 times the area of data array in the memory cell array cache/ the base array cache, 

respectively, with all the required registers and without other components described above. 

The actual area of the combined cache module is shown in Table 6.4. 

Table 6.4 Area overhead of the combined reconfigurable cache 

Function FIR, DCT/IDCT 
Technology 0.6fj,m 0.8 fj,m l.Ofim 1.2 fxin 

Interconnect & registers 
for FIR 

1.94 mm2 3.45 mm2 5.39 mm2 7.77 mm2 

Interconnect «^registers 
for DCT/IDCT 

1.51 mm2 2.68 mm2 4.19 mm2 6.04 mm2 

RFC framework 
(base array cache) 

4.41 mm2 7.83 mm2 12.24 mm2 17.62 mm2 

Area Overhead1 3.45 mm2 6.13 mm2 9.58 mm2 13.81 mm2 

Area Overhead2 7.86 mm2 13.96 mm2 21.82 mm2 31.43 mm2 

% for area overhead1 63% of area for array-only of the memory cell array cache 
% for area overhead2 21% of area for array-only of the base array cache 

1 Area overhead of the "only" memory cell array 
2 Area overhead of interconnections and registers regarding the "only" base cache array 
described in Section 4.4 

Since the decoders for LUTs account for most of the area overhead in the RFCs, adding 

more interconnection does not add much area in the combined RFC. The base array cache 

described in Section 4.4 consists of dedicated 4-to-lô decoders, four address lines, an_d a number 

of switches to connect the local bit lines to the global bit lines. The area of combined RFC 

is smaller than the sum of smallest areas in the existing FIR and DCT/IDCT function units 

in both cache models. This implies that we can add additional multiple functions in the 
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existing RFC with a relatively small area overhead. The interconnection area for individual 

functions is also listed in Table 6.4. Moreover, since some part of the area for routing tracks 

between the two functions is overlapped, for example, adders, constant multiplier, and ROMs, 

the axea of interconnection in the combined RFC may be less than the sum of two individual 

interconnection areas. The fixed interconnection for the functions can be efficiently routed and 

does not take much area. The placement and routing of the RFC has been done manually as 

a first cut. We can expect the area overhead to reduce further if we place and route carefully. 

6.3 RFC with different cache organizations 

We described the RFC for computations based on an 8KB size of cache memory with 512 

sets and 16-byte cache line in Section 6.1. In this section, we show how different cache organiza

tions for an 8KB sized cache memory work for the RFC. The RFC for the filtering operations, 

shown as an FIR filter in Section 6.1.1, can be implemented in various cache organizations in 

8KB. Figure 6.6 shows the implementations of filters using the RFC in different cache orga

nizations with respect to the number of sets and size of cache line. In the figure, one block 

of 2KB represents a MAC (Multiply-and-Accumulate) stage for a 16-bit constant coefficient 

multiplier and a 32-bit accumulator implemented in the RFC while an 8-bit constant coeffi

cient multiplier and a 24-bit accumulator is implemented in 1KB as presented in Section 6.1.1. 

This mapping organization can be applied to any other computations (such as DCT/IDCT) as 

long as the required number of LUTs to implement a function is satisfied in a cache memory 

size. The axea overheads of RFCs in the different organizations are similar to that of the RFC 

(8KB with 512 sets and 16-byte line) shown in Section 6.2 because the number of LUTs is the 

same and the interconnection is not much varied. The arrows in the figure represent a flow of 

pipeline stages to perform a filtering operation. Note that eight MAC stages are mapped into 

a 16KB cache memory with 256 sets and 64-byte line using a mapping scheme similar to 8KB 

sized cache memory. This indicates that a higher number of stages or processing elements can 

be added into a larger sized cache memory without any significant modification. In addition, 

if the number of sets in a cache reduces, the number of cache lines to be configured reduces 
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since more LUTs can be written simultaneously using a cache write operation for a line. This 

is one advantage of using cache memory for LUT-based reconfigurable logic. The shaded parts 

in each MAC in the figure show the portion to be reconfigured partially for the constant coeffi

cient multiplier, especially in the FIR filter. Thus, the amount of time for the configuration is 

determined by the number of sets and cache line size, not the number of LUTs for a function. 

Output 

16bytes lobytes L6bytes lobvtes 

2KB 2KB 
MACO MAC 1 

2KB 
MAC 2 

(a) 
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Output 
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Figure 6.6 A filter (16mult-32acc) with (a) 128 sets and 64 bytes/line 
(8KB); (b) 256 sets and 32 bytes/line (8KB); (c) 256 sets and 
64 bytes/line (16KB) 
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6.4 Execution time 

In this section, we show the execution time comparison for Convolution and DCT/IDCT 

as presented in [28, 29]. In this experiment, we compare the performance of these functions 

on a Sun UltraSPARC workstation with their execution time derived from a model using an 

RFC. These models are based on various computing parameters, such as the number of taps 

and the size of images. The RFC computing time model assumes that all input/output data is 

available in cache memory with no stalls. Hence, the modes based performance is a best case 

scenario. The simulation results of a processor integrating RFCs are shown in Chapter 7. 

6.4.1 Convolution 

We compare the execution time of the FIR filter using a reconfigurable functional cache 

(RFC) to a conventional general purpose processor (GPP) running the algorithm in Equa

tion 6.1. Since the RFC may have to be flushed, we show the results for the following two 

cases. In the first case, no data in the cache needs to be written back to main memory before 

it is reconfigured as the function unit, for example, caches with write-through policy. In the 

second case, the processor has to flush all the data in the cache before configuring it (i.e. writ

ten back to the main memory). The extra time is denoted by the ''flush time' and is required 

for write-back caches. 

The total execution time of the Convolution in the RFC consists of configuration and 

computation times. The configuration time includes the times for adder and constant coeffi

cient multiplier configuration. In the second case, the cache flush time is also added to the 

configuration time. The actual parameter values to compute the times are given in Table 6.5. 

We chose the values to be as conservative as possible with respect to SPARC Hi processor 

cycle time at 270 MHz [51] (where the GPP simulation was performed). The access time for 

the data cache in SPARC IK processor is 1 cycle in a pipelined fashion (it is a 16KB direct 

mapped cache with two 16B sub-blocks per line). In a typical processor, this access time can 

be anywhere from 1-2 cycles. Hence, we chose 3 cycles for the cache access time in RFC for 

a conservative model. Had we chosen a lower cache access time (1 or 2 cycles), the RFC 
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execution time would appear to be even more favorable since other parameters, such as LUT 

read time in RFC, were based on the cache access time - 3 cycles (12ns). The main rruemory 

access time is 20 cycles. The parameters for the cache structure are based on an 8KZB size 

cache with 8 words per block and 16 bits per word (£cac/ie> Llut> and Wn). Since 8 words 

in a cache block are stored in an interleaved fashion, each bit of one word is stored e very 8 

bits. The 1st and 9th bits of a LUT content can be written in the LUT simultaneously by 

writing one word (parameter m=2). The computation time of one stage/PE in the RZFCs is 

chosen by the following factors. Each stage in the Convolution function unit requires three 

LUT reads (with additional time for propagation through a number of multiplexers) while 

each PE in DCT/IDCT unit does two LUT reads with additional time for multiplexers. We 

use read time for a LUT of 8ns with the multiplexer propagation time - less than the- cache 

access time because the LUT is much smaller and faster than the 8KB cache memory/. The 

expressions for the times are presented below. 

• Config. Time for adder 

= [ (fimem/cpu)(m)(.l-JLUT) + {,Rcache/cjm)('rfi)(^J cache J-'LUT x S) ] X Tcpu 

• Config. Time for constant multiplier 

— (R-mem/cpu) (m) (^LUt) (TAP) X-Tcpu 

• Cache Flush Time 

™ (Hmem/cpu) ( Wn) (-^coc/te) x ^cptt 

• Computation Time 

= [ C2^) X (X + 2S-1) ] X T\__stage 

In the computation time, we add 2S instead of S for the initial pipeline steps because 

we exploit the double pipelined input data in each stage of the Convolution as shown in 

Figure 6.1(a). In addition, we separate the configuration time for adders and multipliers. The 

reason for this is that only one set of data for a LUT is necessary when reconfiguring the LUTs 
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for adders because the contents of all the LUTs are the same, while a different configuration 

data is necessary for multipliers. The time for storing and loading input and intermediate data 

can be overlapped with the computation time. Therefore, data access time for the computation 

is not added. 

Table 6.5 Parameters for the RFCs 

Parameter Description Values 

Tcpu One cpu cycle time 4ns 

T\_stage The time to complete the computation 
in one stage/PE 

24ns/16ns 

Rmem/cpu Main memory access latency 80ns 

R-cache/cpu Cache memory access latency 12ns 

L cache. Number of cache lines in the cache 512 
LLUT Number of contents in a LUT 16 
Wn Number of words per cache block 8 

a 
Number of bits required to configure a content of 
one LUT for a 2-bit adder with 3bits for carry=0 
and 3bits for carry=l & for the half of a 4x8 constant 
coefficient multiplier 

6 

r Number of bits required to configure a content of LUT 
for a ROM 

16 

m Number of bits to be written by one word when configuring 2 
S Number of taps/PEs implemented in the RC 8 

Parameters for Convolution 

TAP Number of taps 8 - 256 
X Number of data 64 - 8192 

Parameters for DCT/IDCT 

% The width of input elements 8 bits 
N The size of a basic block image 8 

IMG The size of an entire image 8x8 -
1920x1152 

The execution times for RFC and the GPP are shown in Table 6.6. We assume that all 

the input data fit into a data cache for both the RFC and the GPP computations according 

to the following observation. We traced the number of cache misses in the GPP for all the 

cases in Figure 6.6. From the trace we found that regardless of the number of taps and data 
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elements in the computation, the number of cache misses does not vary with the execution 

time. Therefore, we neglected the effect of the cache miss penalty in the comparison. We 

simulated Convolution with floating point variables instead of integers which leads to faster 

processing in GPPs. The choice between memory cell array and base array determines cache 

access time in GPPs. As we explained in Section 6.6. the RFC based on memory cell array 

will give smaller access time in a GPP even for other applications while the RFC based on base 

array will increase the cache access time by 1-2%. We have assumed the cache access time in 

the GPP and in the processor with RFC to be the same for both cache types (memory cell 

array or base array). 

Table 6.6 Comparison of execution time of Convolution between SPARC and RFC 
(fjsec) 

No. No. RFC RFC 
of Data SPARC w/o memory flush Ratio w/ memory flush Ratio 

Taps elmt (269.8 MHZ) config compute config compute 

256 384.58 6.50 7.01 6.50 1.01 
8 1024 1553.36 48.38 24.94 21.19 376.06 24.94 3.87 

4096 6307.85 98.66 42.90 98.66 13.29 
8192 12605.09 196.97 51.38 196.97 22.00 
256 735.18 13.01 7.98 13.01 1.75 

16 1024 2963.83 79.10 49.87 22.98 406.78 49.87 6.49 
4096 11928.19 197.33 43.15 197.33 19.75 
8192 23893.06 393.94 50.51 393.94 29.84 
256 1435.98 26.02 8.62 26.02 2.91 

32 1024 5792.27 140.54 99.74 24.11 468.22 99.74 10.20 
4096 23270.04 394.66 43.48 394.66 26.97 
8192 46540.36 787.87 50.13 787.87 37.05 
256 2840.07 52.03 9.00 52.03 4.42 

64 1024 11465.30 263.42 199.49 24.77 591.10 199.49 14.50 
4096 45898.64 789.31 43.60 789.31 33.25 
8192 91831.01 1575.74 49.93 1575.74 42.38 
256 5651.69 104.06 9.22 104.06 6.01 

128 1024 22737.80 509.18 398.98 25.04 836.86 398.98 18.40 
4096 91360.32 1578.62 43.76 1578.62 37.82 
8192 182750.06 3151.49 49.92 3151.49 45.82 
256 11265.51 208.13 9.32 208.13 7.33 

256 1024 45287.32 1000.70 797.95 25.18 1328.38 797.95 21.30 
4096 183016.17 3157.25 44.02 3157.25 40.80 
8192 368557.75 6302.98 50.46 6302.98 48.30 



www.manaraa.com

82 

The speedup of RFC over the GPP for Convolution is shown in Figure 6.7. Our results 

show that the RFC provides a better performance improvement than the GPP as the number 

of data elements increases. Figure 6.7 shows that the performance improvement is almost 

independent of the number of taps without memory flush in (a). The ratio of the computation 

time with less taps decreases with memory flush in (b) because the flush time affects the ratio 

of the total execution time more with the decrease in the number of taps. 

8 Taps —— 
16 Taps —•— 
32 Taps ——r-
64 Taps 

128 Taps-
2 5 6  T a f > s -  — -  .  

1024 2048 4096 8192 64 128 256 512 

8 Taps 
16 Taps 
32Taps 
64 Tac» 

128 Ta» 

64 1024 2048 4096 8192 128 256 512 

Number of Data elements Number of Data elements 

(a) (b) 

Figure 6.7 Ratio of execution time of RFC and GPP for Convolution: (a) 
without memory flush; (b) with memory flush before converting 
into the computing unit 

6.4.2 DCT/IDCT 

As described in Section 6.1.2, the 2-D DCT/IDCT can be completed by two 1-D transforms. 

This procedure is similar to the data caching scheme which is adapted for the FIR filter 

module (i.e. two additional memories for processing with intermediate data). We compare the 

execution time of the 2-D transforms in RFC and the GPP executing the fast DCT algorithm 

described in Section 6.1.2. As in the previous example, the two cases of cache 'flush time', no 

cache flush and cache flush, are considered in this section. 

The total execution time of the DCT(IDCT) in the RFC consists of configuration and 

computation times. The configuration time includes the writing times for the contents of 

ROMs and adders. In addition, in the case of cache flush, the cache flush time is also to 
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be added in the configuration time. The actual parameter values to compute the times for 

this function used are the same as for the Convolution in Table 6.5. The expressions for the 

execution times are presented below. 

• Config. Time for accumulators and pre (or post)-adders/subtracters 

= [ (•Rmem/cpu)(^)(-£'£C/r) + {Rcache/cpu)(^)((S + 2) X I.£ut) ] X 

» Config. Time for ROM 

~ [(-^mern/cpu)(m)(.S x LLUT)] x -Zcpti 

• Cache Flush Time 

(R-mem/cpu) (^n) (-^cac/ie) * -^cpu 

• Computation Time 

= [2 x (1-D transform)] % ( Basic âock size^ stage — [2 x (iV+Wd x iV)] x xT\_stage 

The cache 1 flush time' is the same as earlier. Configuration data needs to be written to 

all the PEs once only because all the data elements in an image are processed with the same 

coefficients using the distributed arithmetic. The configuration procedure of the Convolution 

in the previous section is applied to DCT/IDCT. As described earlier, the time of loading and 

writing all the in/out data from/to memories can be overlapped with the computation. Thus, 

only the initial loading and the final writing time, which is overlapped in the transition of 

data set, is added to the computation time of each 8x8 1-D transform for data access time. 

In this configuration, the adder is used as both a 16-bit adder and a 16-bit subtracter with 2 

sets of configuration data. Since only one of the pre/post-adders (subtracters) is necessary for 

DCT and IDCT, respectively, the configuration time of pre-(or post)adders/subtracter with 

the same configuration scheme is added in the execution time. 

The execution times of the GPP and RFC are shown in Table 6.7. The assumption regard

ing the cache misses of data mentioned in Section 6.4.1 has been applied to this simulation. 

Therefore, the main memory access time is not considered for in/out data of the computation. 

For a larger size of image than the basic block, 8 x 8, we partitioned the entire image into 
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a number of basic block images. We assume that the cosine weighted factors are pre-stored 

as coefficients in an array when the GPP processes the DCT/IDCT, which means the actual 

cosine coefficient computation is not performed in the GPP. It is much faster than the com

putation with the actual cosine factors. Again, floating point variables are employed in our 

simulation of DCT/IDCT for faster processing in the GPP. 

Table 6.7 Comparison of execution time of the DCT/IDCT between SPARC and 
R F C  ( f j s e c )  

No. of RFC RFC 
Size of 8 x 8 2-D SPARC w/o memory flush Ratio w/ memory flush Ratio 
Image (I) DCT (269.8MHZ) config compute config compute 

8 x 8  1 168.86 101.12 2.30 1.63 428.80 2.30 0.39 
16 x 16 4 641.85 101.12 9.22 5.82 428.80 9.22 1.47 
32 x 32 16 2346.78 101.12 36.86 17.01 428.80 36.86 5.04 
64 x 64 64 9276.67 101.12 147.46 37.32 428.80 147.46 16.10 

128 x 128 256 37498.88 101.12 589.82 54.27 428.80 589.82 36.81 
256 x 256 1024 148428.84 101.12 2359.30 60.33 428.80 2359.30 53.24 
512 x 768 6144 859776.81 101.12 14155.78 60.31 428.80 14155.78 58.95 

1920 x 1152 34560 4850821.01 101.12 79626.24 60.84 428.80 79626.24 60.59 

According to the speedup in Figure 6.8, the RFC for DCT/IDCT has a better performance 

improvement over the execution time of the GPP as the size of input image increases. The 

performance improvement is roughly independent of the memory flush in the larger size of 

images. Since the computation is ROM based, only the initial configuration is necessary. 

Thus, the larger sizes in the results, 512 x 768 (TV-image) and 1920 x 1152 (HDTV), do not 

rely on the flush time. For MP@HL (Main Profile at High Level) decoding, the maximum 

allowable time to process a macroblock is 4.08/zs [66]. The result shows that it is possible to 

process a block in 2.30^s. 

6.4.3 Multi-context reconfigurable functional cache 

There is no difference between individual and combined caches in terms of the execution 

time. However, the combined cache may have a slightly higher propagation delay due to longer 

wires caused by the inclusion of interconnections, in our instance, this causes 1.6% increase in 
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Figure 6.8 Ratio of execution, time of RFC and GPP for DCT/IDCT with 
and without 'flush time' 

cache access time. Therefore, we can assume that both individual and combined RFCs have 

almost the same execution performance. 
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CHAPTER 7. SIMULATION 

In this chapter, we provide the results of our experiments. We describe the functions im

plemented in RFC in Section 7.1. The simulation environment and parameters (methodology) 

are described in Section 7.2. Finally, we measure and compare the performance of a base 

processor without and with RFCs in Section 7.3. 

7.1 Computing units configured using RFC 

In the RFC based on the organization (LUT-based reconfigurable logic) described in Chap

ter 4, we implemented two primitive functions in DSP and multimedia applications, Multiply-

and-Accumulate (MAC) and Distributed Arithmetic (DA). The MAC consists of constant 

coefficient multiply and accumulate. The DA unit performs a sum of products with a look-up 

table based multiplication in a bit-serial fashion and consists of a ROM and a shifting accu

mulator. This kind of function unit can be used in many of the important DSP and media 

applications [72] with a small amount of area. 

The MAC implemented in RFC performs a filtering operation with a sliding window of 

coefficient with 8 or 16-bit integer and fixed-point data. A floating-point computation in 

software can be performed in the DA unit with a binary format of floating-point numbers. 

In RFCs, four MACs performed in a pipelined fashion and eight processing elements (PEs) 

processed in parallel are implemented. One MAC contains a 16-bit multiplier and a 32-bit 

accumulator while one PE includes a 16x16 ROM and a 16-bit shift accumulator. More 

details for the actual implementation can be found in Chapter 6. The comparison with the 

previous ASIC chips for FIR and DCT in Section 6.2 shows that the area overhead of RFC is 

smaller than the core area of those units. 
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7.2 Experimental methodology 

7.2.1 Benchmarks 

Discrete Cosine Transform (DCT) is the most efficient technique in image encoding and 

compression schemes. Two 1-D DCT/IDCT processes can represent a 2-D DCT/IDCT process. 

Convolution is a DSP algorithm that multiplies two (integer) arrays of dimension-two and is a 

common requirement in signal processing and image processing for pattern recognition, edge 

detection, etc. 

Using these two algorithms mapped to the computing units in RFCs, we simulated the 

most common media processing applications - Motion Picture Experts Group 2 (MPEG2) -

mpeg2encoder [73] and mpeg2decoder [73, 74], Joint Photography Experts Group (JPEG) -

cjpeg encoder [73, 74] using DCT/IDCT and Finite Impulse Response {FIR) [75], Infinite 

Impulse Response (IIR) [75] using the concept of Convolution algorithm. The inputs to the 

benchmarks are shown in Table 7.1. 

Table 7.1 Benchmarks used in this thesis 

Benchmark Description with input 

mpeg2enc MPEG2 encoding for four 352x240 frames from YUV components 
mpeg2dec MPEG2 decoding for DVD (surfer.m2v) into YUV components 

cjpeg JPEG encoding for 1024x768 image (8-bit vigo.ppm) into vigo.jpg 
FIR 16 / 256 taps with 16K data elements 

(need partial configurations - total 4/64 times) 
IIR two sets of coefficients (total 9) with 16K data elements 

The data type for mpeg2enc/dec and cjpeg is an 8-bit integer and a 16-bit integer for FER 

and IIR. The benchmarks are compiled using Simplescalar gcc [71] from the source codes in 

UCLA mediabench while some of large application data (for example, DVD) are from Berke

ley Multimedia Workload [74]. The number of filtering coefficients is variable in FIR while 

the IIR performs an auto-regressive moving-average (ARMA) filter with four auto-regressive 

filter coefficients and five moving-average filter coefficients [75]. Both are processed in 16-bit 
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multiplication, and 32-bit accumulation. The HR is used as a high pass filter in the VSELP 

vocoder [75]. In HR, two sets of coefficient window sliding and multiplying arrays are sub

tracted. One time configuration for 8 PEs is required in DCT/IDCT. Since the physical 

number of taps (16/32-bit MAC) implemented in RFC is four, we need a partial reconfigura

tion as described in Section 5.2.4.4 to perform more than four physical taps in FIR and HR 

with intermediate results reused. 

7.2.2 Simulator and parameters 

The microarchitecture in Simplescalar simulator [71] is chosen as a base processor in our 

simulation. We modified the C source code in the simulator to support the proposed microar

chitecture with the RFCs. The new r/c instructions described in Section 5.2.3 are compiled 

using existing load/store instructions with the annotated field in Simplescalar instead of mod

ifying the compiler. However, the operation and effect of those instructions are the same as we 

described earlier. We replaced the original code for the targeted computations in the bench

marks with the code for RFCs shown in Section 5.2.5 to configure and exploit the RFC as a 

specialized computing unit with the dynamic set associativity. Each benchmark with the RFC 

is optimized differently with the rfc instructions to perform each core computation, such as 

DCT, DDCT, FIR, and HR in the C source code. 

The new instructions are embedded into the source code using inline assembly code with 

the substantial address for data in benchmarks. Some of the operations in the corresponding 

computation are not mapped to RFC due to the lack of available resources (LUTs) in RFC 

or difficulty of the replacement with the rfc instructions, for instance, moving data from one 

array to another array. Especially, we could not map one of the coefficient multipliers in IIR 

due to the lack of available LUTs. In FIR, an array is copied into another array using a 

conventional C code. In the modified simulator, we traced the exact operations of RFC in 

each cycle. When input data is loaded into RFC, the simulator holds the data until the RFC 

is ready and then, processes the data with the exact number of cycles to be taken in RFC. 

Finally, it stores the output to the memory hierarchy. The rfc instructions replace the floating 
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point DCT/IDCT function call in mpeg2 encoder/decoder since the hardware implementation 

is comparable to the floating-point computation in software [68]. Similarly, the integer DCT 

in cjpeg is replaced with the rfc instructions. 

The parameters for the simulation in the base processor are shown in Table 7.2. These are 

the same for both the processor without and with RFCs. However, we varied the cache pa

rameters, such as size and associativity. Since the cache access time in RFC is not significantly 

increased or even decreased as estimated in Section 4.4, we assumed the Ll cache latency of the 

base processor is the same in both the models without and with RFC. The operation latency in 

FIR/HR is 3 cycles per pipeline stage for four 4x16 constant multipliers and 20-bit/24-bit/32-

bit adders (four LUT reads and propagation of multiplexers). In DCT/IDCT, the latency is 1 

cycle per processing element for a 16x16 ROM and a 16-bit adder (two LUT reads and propa

gation of multiplexers). The DCT/IDCT on the RFC computes the l-D transform for a row of 

an 8x8 image with eight PEs in eight cycles (8-bit data) in a bit serial fashion. Additions and 

subtractions of input data elements are performed before the computation for DCT/IDCT, 

while after for IDCT. Thus, the number of execution cycles for one row in an 8x8 image in 

RFC is 9 cycles after loading all the eight input elements. The size of I/O buffers for RFCs is 

eight. 

7.3 Performance measures 

We compare the number of cycles taken to execute each application with various cache 

parameters. First, we show the cache organization with RFCs built in each module (way) as 

depicted in Figure 5.3 (a) - full dynamic associativity (FDA). Next, we compare the result 

of the above organization with that of the alternate cache organization shown in Figure 5.3 

(b). The further partitioned cache uses one smaller module for the reconfiguration to re

duce the performance impact using the partial dynamic associativity (PDA) as described in 

Section 5.2.2. 

FDA: Figure 7.1 shows the total number of execution cycles, which is normalized to the 

execution cycles with 32K 2-way set associative cache, in mpeg2dec, mpeg2enc, cjpeg, FIR-

lôtaps, FIR-256taps, and HR. The graph also shows the fraction of cycles taken by the core 
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7.2 The base processor parameters with RFC and without RFC 
Simplescalar simulator 

Issue width 8 

Instruction RUU: 64 

window size LSQ: 64 

Functional units 
- integer arithmetic 4 

- integer multiplier I 

- floating point arithmetic 4 

- floating point multiplier 1 

LI data cache 
- size 32KB, 64KB, 128KB 

- associativity 2 / 4-way 

- line size 64 bytes 

- hit latency 2 cycles (same for both) 

LI inst. cache 
- size 64KB 

- associativity 2-way with 64B line 

- hit latency 2 cycles 

L2 cache 
- size 1MB 

- associativity 4-way with 64B line 

- hit latency 10 cycles 

Memory 
- access latency 60 cycles for 64B 

(pipelined) 
- memory bus width 8 bytes 

- memory ports 4 

TLB 
- D-TLB 512KB 

- I-TLB 256KB 

- miss latency 30 

Branch prediction 
- bimodal predictor size 2KB 

- branch mis-prediction latency 3 

- return address stack size 8 



www.manaraa.com

91 

computation mapped into RFC (DCT, IDCT, FIR, and HR) in the benchmarks of the base 

processor without RFC and with RFC (including configuration time). 

The performance improvement is shown as an overall speed-up in Figure 7.2. The speed-up 

of each core computation performed in the RFCs is also shown in the figure. The specialized 

computing units configured from RFCs improve the performance of each core function signif

icantly. However, the overall speed-up relies on the frequency of those function calls in the 

entire application. The speed-up for FIR with 256 taps is higher than with 16 taps although 

the number of partial configurations for 256 taps is 16 times more than that for 16 taps. This 

implies that the configuration time is not a dominating factor for the performance if a large set 

of data is processed. The configuration time is compensated by accelerating the performance 

of core computation. 

Various cache organizations: Our simulation shows that the number of execution 

cycles in the benchmarks using RFC as a specialized computing unit is smaller than that of 

the base processor without RFC in all the cases except the 32/64KB 2-way set associative 

cache in mpeg2enc. To see the effect of cache organizations, we simulated the benchmarks 

with various cache organizations in the base processor as shown in Figure 7.3 (mpeg2dec, 

mpeg2enc, cjpeg) and 7.4 (firlô, fir256, iir). In the figure, the execution cycles are normalized 

to the 16KB direct-mapped cache memory. The level-1 data cache miss rate for each benchmark 

is also shown. Note that the other parameters remain the same with the above simulation. 

Unlike the relatively low effect in other cache organizations, the direct-mapped cache for 

mpeg2enc increases the number of execution cycles by about 16.1% for 16KB and 7.2% for 

32KB due to the significant increase in the cache misses. Thus, the performance degradation 

in using RFC is caused by the reduction in cache capacity to half and in associativity to direct-

mapped, when RFC is configured for mpeg2enc. However, in all other cases of the benchmarks, 

a larger cache memory hardly increases the performance as we stated in Section 1. Note 

that FIR (16 taps) and IIR with the direct-mapped cache degrades the performance slightly 

compared to other organizations. However, the use of RFC in 2-way set associative caches 

does not scale down the performance significantly. The low effect of the dynamic associativity 
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10 Base w/o RFC Q CORE portion w/o RFC 0 Base w/ RFC U CORE portion w/ RFC] 
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FIR (16taps) FIR (256taps) IIR 

Figure 7.1 Normalized execution cycles in the base processor w/o and w/ 
RFC 
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•Overall • Core function 
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5 334 
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mpegdec 

32K- 64K- 64K- 128K-
2way 2way 4way 4 way 

mpegenc 

32K- 64K- 64K- 128K-
2way 2way 4way 4 way 

cjpeg 

u Overall BCore function 

10.18 10.14 10.18 10.14 
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32K- 64K- 64K- 128K-
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FIR (16taps) 

32K- 64K- 64K- 128K-
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FIR (256taps) 

32K- 32K- 64K- 128K-
2way 4way 4 way 4 way 

IIR 

Figure 7.2 Speed-up of benchmarks using RFCs (overall and core compu
tation) 
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is because many instructions in those applications are replaced with r f c  instructions. In most 

of benchmarks, the direct-mapped cache with a smaller size slightly increases the number of 

execution cycles. The reason for that is the large number of sets in direct-mapped caches could 

distribute the blocks to be mapped to the same location (set) into other sets. 

PDA: The effect of the dynamic associativity degrades the overall performance in mpeg2enc. 

We partition a cache memory further with the minimal size of RFC as shown in Figure 5.3(b). 

This partial dynamic associativity can reduce the impact of the reconfiguration compared to 

the full dynamic associativity when reconfiguring. The further partition in 64KB 2-way cache 

for mpeg2enc increases the overall performance by 1.05% as shown in Figure 7.5, unlike in 

64KB 2-way with the full dynamic associativity (0.99%). However, the 32KB 2-way cache 

with the smaller partition still degrades the performance to 0.98%. The number of execution 

cycles in other cases is slightly decreased as compared to those of the full dynamic associativity 

for RFC. We show the miss rates in the simulations using the partial dynamic associativity 

for RFC in Figure 7.6. The number of cache misses decreases with the partial dynamic as

sociativity in most cases because only a small portion of address space is mapped to the low 

associative sets in a cache. 

2-way vs. 4-way: The RFC built in a 2-way set associative cache increases the number 

of cache misses significantly in mpeg2enc. Even with the partial dynamic associativity, the 

2-way set associative cache does not produce the performance of the other organizations in 

mpeg2enc due to the low associativity. To reduce the impact of low associativity, which causes 

the conflict misses, we simulated mpeg2enc with the same size of cache memory (32KB), but 

with 4-way associativity (8KB-RFC in each module). In Figure 7.7, the execution cycles with 

various cache organizations of 32KB are normalized to that with the 32KB 2-way associative 

cache. The results show that the 4-way set associativity improves the overall performance 

similar to that of other cache organizations in Figure 7.1. This implies that the conflict misses 

of data in the same address space are reduced significantly by increasing the associativity. 

Therefore, we conclude that at least 4-way associativity is preferred to embed the RFC into a 
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Figure 7.4 Normalized execution cycles with various cache organizations 



www.manaraa.com

97 

Dw/o RFC •F-D-Aw/RFC BP-D-A w/RFC 

110.42 

102.13 

99.87 100-37 100.00 99.81 

94.97 
93.21 93.20 

32K-2way 64K-2way 128K-4way 

Figure 7.5 Normalized execution cycles for mpeg2enc with Full Dynamic 
Associativity (FDA) and Partial Dynamic Associativity (PDA) 
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cache memory. This minimizes the impact of the reconfiguration with respect to the caching 

capacity. This should not be a problem as most microprocessors use a 4-way set associative 

cache. 

The most important factors for speed-up are the reduced number of instructions and the 

acceleration of computation with a specialized unit. Using the rfc instructions, we can reduce 

the number of instructions significantly because most of the arithmetic instructions are replaced 

with the operations in the RFC. Additionally, there is a reduction in the number of stack 

memory accesses from the original source code. Since the computing unit in RFC is specialized 

and customized for the desired computations, it can potentially feed the RFC with new data 

every cycle. Moreover, the specialized unit replaces many operations from the original source 

code. The data is loaded once in the pipeline and then processed through all the required 

stages using a specialized computing unit configured from the RFC. 

Configuration time: The time for configuration is determined with the number of sets 

and cache line size in a cache module regardless of the associativity. If we configure partially 

at run-time, the number of partial configuration steps is an additional factor. The number of 

cycles for RFC configuration in the benchmarks is shown in Table 7.3. The configuration cycles 

in the various organizations are shown in Table 7.4. The results indicate that the number of 

sets is the dominant factor to determine the configuration time. This is because the number 

of sets corresponds to the number of memory accesses (misses) and a larger cache line writes 

contents of many LUTs simultaneously. 

Table 7.3 Number of cycles for the configuration in benchmarks 

32K-2way/64K-4way (256 sets) 64K-2way/128K-4way (512 sets) 
mpeg2dec 1654 3112 
mpeg2enc 1534 2998 
cjpeg 1596 3060 
FIR 
- 16 taps 2236 4264 
- 256 taps 12256 25684 
1ER 1657 6125 
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Table 7.4 Configuration cycles with different cache organizations (32K -
4way) 

128 sets and 64B 256 sets with 32B 512sets with 16B 
mpeg2dec 910 1592 2986 
mpeg2enc 798 1478 2872 
cjpeg 860 1540 2934 
FIR 
- 16 taps 1264 2177 4140 
- 256 taps 6844 12137 25620 
1ER 1725 3085 5885 

Cache misses: When one of the data cache modules is configured as a computing unit, 

the capacity of cache memory is reduced to 50% and 75% for 2-way and 4-way set associativity 

in the full dynamic associativity, respectively. To see the effect of reduced memory capacity, we 

profile the number of data accesses and misses in the level-1 data cache memory without and 

with RFCs in Table 7.5 for the selected benchmarks. The miss rates for the benchmarks are 

also shown in Figure 7.8. In a low associativity (2-way), the number of misses after configuring 

an RFC as a computing unit is higher than the base processor without RFCs. However, the 

number of misses in 128K 4-way set associative cache does not vary significantly with the 

dynamic associativity. In FIR using the RFC, the total number of data accesses is cut down 

due to the reduced number of stack accesses. Since the number of accesses for intermediate data 

in the RFC process is added as many times as the number of partial reconfigurations, the total 

number of misses increases. Note that the number of misses with RFC in mpeg2dec and 1ER is 

smaller than without RFC. Most of the instructions executed in mpeg2dec are replaced with 

the rfc instructions (about 77% for EDCT). However, the miss rate is higher than without 

RFC. The data forwarding between OBUF and IB UP for 1ER described in Section 5.2.4.6 

reduces the number of misses significantly. This forwarding may not be done in the original 

benchmark with the base processor (without RFC) due to the nature of the program. As shown 

in Figure 7.6, the number of misses reduces further with the partial dynamic associativity. 



www.manaraa.com

101 

Base w/o RFC •w/RFC 
0.07 

0.06 

0.05 S 
5 
g 0.04 

I 
5 

0.03 

0.02 

0.01 

//// ^VVV* /VVV 

mpeflZdec mpeg2«ic cjpeg FIR(16taps) FlR(256taps) IIR 

Figure 7.8 Miss rate for level-1 data cache memory 

Table 7.5 Number of data accesses and misses to level-1 data cache 

mpeg2dec mpeg2enc cjpeg 
access miss access miss access miss 

32K 
2-way 

w/o RFC 557217369 1841048 395764840 5621892 88192493 522514 32K 
2-way w/ RFC 243479064 3166490 388017519 24724727 88187936 1272728 

64K 
2-way 

w/o RFC 557244797 1407812 396131144 4898529 88181257 473107 64K 
2-way w/ RFC 244079977 1399239 377216829 13327688 88201102 917253 

64K 
4-way 

w/o RFC 557242614 1316662 396774657 4856816 88185264 466513 64K 
4-way w/ RFC 244214721 569710 376845411 5157770 88192895 486697 

128K 
4way 

w/o RFC 557343109 1289796 396638308 3842490 88178858 423220 128K 
4way w/ RFC 244215876 444390 376690409 4305989 88175818 438739 

firl6 fir256 iir 
access miss access miss access miss 

32K 
2-way 

w/o RFC 5633761 2752 37092533 4247 4537186 47106 32K 
2-way w/ RFC 3666798 9843 6618498 104043 || 3685969 7416 

64K 
2-way 

w/o RFC 5634039 2109 37092077 2851 4536698 45774 64K 
2-way w/ RFC 3667633 9420 6621253 105480 3686000 7286 

64K 
4-way 

w/o RFC 5634260 1372 37091554 1378 4538886 2061 64K 
4-way w/ RFC 3667575 8724 6619275 102924 3685741 6828 

128K 
4way 

w/o RFC 5634260 1353 37091554 1360 4538887 1866 128K 
4way w/ RFC 3668947 3129 6622567 7449 3686433 3939 
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RFC organization: According to the simulation results with various parameters, we 

determine the overall cache organization with RFC, such as associativity, number of sets, and 

line size. A high-associativity minimizes the number of conflict misses caused by the reduction 

in the associativity. A smaller number of sets and larger line size (with the minimal size of 

RFC) reduces the configuration time because of a smaller number of memory accesses writing 

many multi-bit LUT configurations in parallel. This is preferred if the reconfiguration of RFCs 

occurs frequently, for instance, in an FIR filter with a large number of taps. However, a large 

sized cache memory with a large number of sets reduces number of misses in general. The 

large number of sets could reduce the conflict misses by distributing the blocks to be mapped 

to a set into other sets, especially when an RFC is used as a computing unit. In the case of a 

large number of sets in cache memories, the partial dynamic associativity, which changes the 

associativity only in a small portion of cache, can reduce the impact of the reconfiguration 

further. The computing time using RFCs does not vary with the different cache organizations 

except with a small cache line size (16 bytes). 

Memory bandwidth: A number of arithmetic instructions for the core computations 

are replaced with the memory operations. In other words, the whole core computation is 

transferred from software (instructions) to the specialized computing hardware with only the 

interface instructions (rfc load/store). This may require a high off-chip memory bandwidth 

(to level-2 cache) for a fast execution with the RFCs. We profile the memory bandwidth 

between the level-2 unified cache memory and the off-chip memory as the required bandwidth 

(for instructions and data) in bytes per cycle. The configuration data carries additional traffic 

in using the RFCs. Figure 7.9 shows the memory bandwidth normalized to mpeg2dec for the 

benchmarks. The memory bandwidth with the RFCs does not increase significantly. This is 

because of the reduced number of instructions using the rfc instructions. A number of memory 

accesses to fetch the instructions are removed. In FIR/HR, the required memory bandwidth 

with RFC is significantly higher than without RFC compared to DCT/IDCT. The partial 

configuration data causes the higher memory bandwidth, especially, in FIR with 256 taps. 
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Figure 7.9 Memory bandwidth required per GPU cycle with a 32K - 4way 
set associative cache 

Adaptability: The simulation also shows that the base processor with a smaller size 

cache memory and RFC performs better compared to a larger size cache without RFC. This 

may suggest a microarchitecture with a smaller cache size matching the performance of a tra

ditional microarchitecture with a larger cache size. This fact is true in media applications 

due to the streaming nature of data and the lack of temporal locality as mentioned in Sec

tion 1. However, the base processor considered in this thesis is a general-purpose computing 

microprocessor. General applications with more random data accesses and higher temporal 

locality other than media applications may need larger on-chip cache memory for a better 

performance, (e.g. HP PA-8500 [18] with 1MB D-cache for fewer cache misses). This implies 

that a general purpose computing processor would need a larger cache memory for a higher 

performance of applications. These observations motivate the need for an adaptive amount of 

resources - between memory and computing unit on demand. Thus, in ABC with RFCs, the 

resources are more fully utilized and some of the applications are accelerated significantly. 

To see the effect of the reconfigurability (adaptability) in this thesis, we also simulated 
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SPEC-95 with 8-way and 4-way set associative caches with the parameters shown in Table 7.2. 

We used the sim-cache simulator in Simplescalar [71]. Sim-cache profiles only the cache func

tionalities without any other processor parameters. The simulation parameters for memory 

hierarchy are 32KB/128KB level-1 data cache and 1MB L-2 cache. The miss rates of level-1 

data cache with both organizations in SPEC-95 are shown in Figure 7.10. The 4-way set as

sociativity reduces the number of cache misses in most cases, which can improve the overall 

performance for the applications. We also simulated the SPEC-95 with 3-way and 4-way asso

ciative caches and the base parameters shown in Section 7.2.2. Some of the applications were 

improved ranging from 0.3% to 1.6% with the 4-way set associative cache. If we had a sepa

rate specialized computing unit (like dedicated reconfigurable logic) and 3-way set associative 

cache, we would not get the improvements achievable by a 4-way set associative cache with 

RFC for SPEC-95 benchmarks. This provides us with a strong motivation to implement RFC 

in general purpose processors. 

7.4 Microprocessor with RFC vs. without RFC 

A conventional general-purpose processor without the reconfigurable functional cache can 

potentially store more data in its cache memory. However, a large cache does not speed 

up FER/HR and DCT/IDCT as much as specialized computing resources can. A small area 

overhead from a reconfigurable functional cache in a processor to provide these specialized 

computing resources accelerates these functions. Moreover, the reconfigurability does not 

affect other functions' execution time negatively since it does not penalize the cache access 

(may be a bit slower or even faster as mentioned in Section 4.4). For example, a program with 

half of its execution time due to FIR or DCT will speed up the FIR/DCT-half with RFC while 

rest of the program retains the same execution time. 

Since the reconfigurability of cache is an orthogonal design axis/issue with respect to a 

conventional cache structure, the cache strategy does not affect the normal cache operation. 

RFC does not require the existing cache structure to be modified. It does add additional 

units such as partitioned decoder and interconnects without destroying conventional cache 
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architecture and strategies. Simply, a cache converts into a special function unit as a custom-

computing machine. The only negative effect is a potentially higher miss rate when part of 

the cache is reconfigured for computing. However, less memory capacity does not impact the 

performance of FIR and DCT (commonly used in multimedia applications) because a larger 

size of cache memory does not scale linearly in a higher performance for media applications [76, 

19, 20, 21]. Only the processor area will increase due to additional RFC logic (which is smaller 

than other customized chips) with a higher performance for FIR and DCT/IDCT. 

In summary, we are targeting a visible high performance (10's of speed up) of computations 

in a microprocessor with a certain family of applications, such as multimedia and DSP appli

cations instead of improving general-purpose computing. The RFC could be one solution with 

low complexity in microarchitecture and design. Other general-purpose computing applications 

do not require high performance and need not be accelerated as much as media applications 

since they do not contain high computing bandwidth tasks. The result of comparison depends 

on the frequency of application use. However, media applications are used frequently requiring 

high performance. This trend will continue until the advent of new application commodities. 

Therefore, we are developing one possible solution that can accelerate the most common media 

applications visibly on general-purpose microprocessor with low area/time overhead instead of 

special purpose processor or dedicated hardware. 
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CHAPTER 8. CONCLUSION 

We have shown an Adaptive Balanced Computing (ABC) microarchitecture using RFCs as 

a dynamic allocated resource. We have also shown a prototype of Reconfigurable Functional 

Cache (RFC), which can perform both as a function unit and a cache, providing dynamic 

memory/computing resources. The evaluation of ABC with minimal modification in microar

chitecture and cache memory is presented. The RFC can serve as a special computing unit 

without any significant modification and overhead in area/time domains in cache architecture 

and a microarchitecture. The RFC can be integrated into a microprocessor by adding a small 

number of well-matched instructions to the existing Instruction Set Architecture (ISA) and 

making minor changes to a conventional compiler. The proposed microarchitecture utilizing 

RFC could also work in parallel with any ASIC/FPGA-like coprocessor in on-chip micropro

cessor. The resource reconfiguration produces a higher performance by providing resources 

specialized to the computing requirements as compared to the fixed configuration of level-1 

cache memories. The reconfiguration impacts the overall performance minimally. The result of 

simulations for mpeg2 encoder/decoder in Distributed Arithmetic and FIR/IIR in MAC using 

the RFC indicates that a certain class of applications (such as multimedia and DSP that are 

compute-intensive and well-structured) can be accelerated highly. The area penalty for this 

reconfiguration is about 50-60% of the memory cell cache array area with faster cache access 

time, and 10-20% of the base cache array area with 1-2% increase in the cache access time. 

In this thesis, a function-level optimization using the RFC is introduced as well. Since the 

reconfigurable unit is based on LUTs, other applications, which have the same behavior (but 

different characteristics - such as different coefficients and sequence of computation), may be 

mapped/executed into the RFC without any significant addition. We have also shown a possi



www.manaraa.com

108 

bility of dynamic distributed microarchitecture on demand of compute-bound applications by 

unloading heavy computations from the processor core to RFC with a small architectural and 

design modification. We are currently working towards an exclusive microarchitecture state for 

RFCs to produce more parallelism using a DMA type of cache management unit, which loads 

and stores data to/from the RFC independent on the core processor. The future work includes 

programmable interconnection in RFC to support various computations. This would further 

promote the efficient use of reconfigurable functional caches on a general purpose processor. 

If independent multiple tasks are executed and multiple RFCs are used simultaneously, more 

function-level parallelism can be achieved. 
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