
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2001

Towards adaptive balanced computing (ABC)
using reconfigurable functional caches (RFCs)
Hue-Sung Kim
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Kim, Hue-Sung, "Towards adaptive balanced computing (ABC) using reconfigurable functional caches (RFCs) " (2001). Retrospective
Theses and Dissertations. 1052.
https://lib.dr.iastate.edu/rtd/1052

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1052?utm_source=lib.dr.iastate.edu%2Frtd%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction..

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

www.manaraa.com

www.manaraa.com

Towards adaptive balanced computing (ABC) using reconfigurable functional

caches (RFCs)

by

Hue-Sung Kim

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Major Professors: Arun K. Somani and Akhilesh Tyagi

Iowa State University

Ames, Iowa

2001

Copyright © Hue-Sung Kim, 2001. All rights reserved.

www.manaraa.com

UMI Number: 3016717

®

UMI
UMI Microform 3016717

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

Hue-Sung Kim

has met the dissertation requirements of Iowa State University

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

DEDICATION

I would like to dedicate this thesis to my wife, Eunjung, and to my daughter, Haerin.

Without their incredible support I would not have been able to complete this work. They

encouraged me to follow the right direction at a moment when I was discouraged by failure.

This work was completed not only by my own enthusiasm, but also by their endless attention

and love. In addition, I would like to thank my friends and parents for their emotional support

during the writing of this work.

www.manaraa.com

iv

TABLE OF CONTENTS

ABSTRACT »

CHAPTER 1. INTRODUCTION 1

1.1 General-purpose computing vs. reconfigurable computing 1

1.2 Adaptive balanced computing 3

1.3 Motivation and approach 4

1.4 Thesis organization ?

CHAPTER 2. BACKGROUND 8

2.1 FPGAs 8

2.2 Integration of processor and reconfigurable logic 10

2.2.1 Gaxp Architecture: Reconfigurable logic in a processor 10

2.2.2 DPGA-coupled microprocessor 10

2.2.3 ConCISe H

2.3 Memory systems with computations 12

2.3.1 Active pages 13

2.3.2 FlexRAM 14

2.3.3 Reconfigurable caches 14

2.3.4 Cache tiling 15

2.4 SIMD extension in microprocessor 15

2.4.1 Intel Pentium MMX/SSE ISA Extension for Multimedia 16

2.4.2 AltiVec in PowerPC 18

2.5 Cache memory 19

2.5.1 Cache memory architecture and design 19

www.manaraa.com

V

2.5.2 Cache memory characteristics in media applications 22

2.6 Superscalar microprocessor 22

2.7 Trends of future microprocessors 23

CHAPTER 3. PROBLEM STATEMENT 26

CHAPTER 4. RECONFIGURABLE FUNCTIONAL CACHE (RFC) ... 29

4.1 Multi-bit output LUTs 29

4.2 Constant coefficient multipliers using multi-bit output LUTs 32

4.3 Organization and operation of a reconfigurable cache module 33

4.4 Access time for cache operations 36

4.5 Configuration and scheduling 40

4.5.1 Configuration of a computing unit 40

4.5.2 Initial/partial reconfiguration 41

4.5.3 Scheduling and controlling data flow 42

4.5.4 Number and size of LUTs in RFC 43

CHAPTER 5. ABC MICROPROCESSOR 45

5.1 Overview of microprocessor 45

5.2 Microarchitecture with RFCs 46

5.2.1 Partitioned cache design 47

5.2.2 Cache organization with reconfigurable functional caches 48

5.2.3 Instructions to utilize RFC 50

5.2.4 Mechanism for the computation in RFC 52

5.2.5 Compiling requirements for the specialized computations 59

CHAPTER 6. EXAMPLES OF RFC 61

6.1 Functions to be mapped to RFC 61

6.1.1 Convolution (FIR filter) 61

6.1.2 DCT/IDCT (MPEG encoding/decoding) 63

6.1.3 Reconfigurable cache merged with multi-context configurations 69

6.2 Area 70

www.manaraa.com

vi

6.3 RFC with different cache organizations 76

6.4 Execution time 7B

6.4.1 Convolution 78

6.4.2 DCT/IDCT 82

6.4.3 Multi-context reconfigurable functional cache 84

CHAPTER 7. SIMULATION 86

7.1 Computing units configured using RFC 86

7.2 Experimental methodology 87

7.2.1 Benchmarks 87

7.2.2 Simulator and parameters 88

7.3 Performance measures 89

7.4 Microprocessor with RFC vs. without RFC 104

CHAPTER 8. CONCLUSION 107

BIBLIOGRAPHY 109

ACKNOWLEDGEMENTS 117

www.manaraa.com

vii

LIST OF TABLES

Table 4.1 Comparison of access time for an 8KB cache with 128bit-wide block . 38

Table 4.2 Parameters to determine the number and size of LUTs 44

Table 6.1 Area comparison of FIR Filters and RFC overhead for FIR 72

Table 6.2 Area comparison of DCT/IDCT chips and RC overhead for DCT/IDCT 72

Table 6.3 Area comparison of Multiplier-Accumulator's and RC overhead for one

MAC stage 74

Table 6.4 Area overhead of the combined reconfigurable cache 75

Table 6.5 Parameters for the RFCs 80

Table 6.6 Comparison of execution time of Convolution between SPARC and RFC

(fisec) 81

Table 6.7 Comparison of execution time of the DCT/IDCT between SPARC and

RFC (fjsec) 84

Table 7.1 Benchmarks used in this thesis 87

Table 7.2 The base processor parameters with RFC and without RFC in Sim-

plescalar simulator 90

Table 7.3 Number of cycles for the configuration in benchmarks 98

Table 7.4 Configuration cycles with different cache organizations (32K - 4way) . 100

Table 7.5 Number of data accesses and misses to level-1 data cache 101

www.manaraa.com

viii

LIST OF FIGURES

Figure 2.1 FAG A structure 9

Figure 2.2 An n input Look-Up Table (LUT) with one-bit output 9

Figure 2.3 4-LUT with 4-context DRAM H

Figure 2.4 Conventional Cache memory structure 21

Figure 2.5 A typical superscalar microprocessor 23

Figure 4.1 Multi-output LUTs : (a) A 2-bit adder ; (b) A 2x2 or a 4x2 constant

coefficient multiplier 30

Figure 4.2 8bit adder using (a) two 9-LUTs ; (b) two 8-LUTs; (c) four 4-LUTs . . 31

Figure 4.3 A 16x16 multiplier : (a) top level of 16 x 16 multiplier ; (b) hierarchical

structure 33

Figure 4.4 Cache architecture in the reconfigurable module 35

Figure 4.5 Parallel decode cache architecture (Base array cache) for faster cache

access time 39

Figure 5.1 Overview of a processor with multiple reconfigurable cache modules . . 45

Figure 5.2 Partitioned cache for multiple modules 47

Figure 5.3 Cache organizations and address mapping with RFCs (a) 4 (b) 16 cache

modules 49

Figure 5.4 rfc instructions for loading and storing "word" type of data 51

Figure 5.5 State transition for the RFC status 53

Figure 5.6 (a) Overview of I/O buffers organization; (b) I/O buffers to dedicated

to RFC 56

www.manaraa.com

ix

Figure 5.7 A basic frame code using RFC as specialized computing units 60

Figure 6.1 (a) One stage of Convolution; (b) Array of LUTs for one stage of Con

volution 62

Figure 6.2 (a) DCT/IDCT processing element; (b) Array of LUTs for DCT/IDCT

processing element with the input registers 66

Figure 6.3 Data flow of the computation process for 8x8 2-D DCT transform . . 68

Figure 6.4 An array of LUTs for the combined RFC with Convolution and DCT/IDCT 69

Figure 6.5 A possible layout of RFC for one stage of the Convolution 70

Figure 6.6 A filter (16mult-32acc) with (a) 128 sets and 64 bytes/line (8KB); (b)

256 sets and 32 bytes/line (8KB); (c) 256 sets and 64 bytes/line (16KB) 77

Figure 6.7 Ratio of execution time of RFC and GPP for Convolution: (a) with

out memory flush; (b) with memory flush before converting into the

computing unit 82

Figure 6.8 Ratio of execution time of RFC and GPP for DCT/IDCT with and

without 'flush time' 85

Figure 7.1 Normalized execution cycles in the base processor w/o and w/ RFC . . 92

Figure 7.2 Speed-up of benchmarks using RFCs (overall and core computation) . 93

Figure 7.3 Normalized execution cycles with various cache organizations 95

Figure 7.4 Normalized execution cycles with various cache organizations 96

Figure 7.5 Normalized execution cycles for mpeg2enc with Full Dynamic Associa

tivity (FDA) and Partial Dynamic Associativity (PDA) 97

Figure 7.6 Miss rate with Full Dynamic Associativity (FDA) and Partial Dynamic

Associativity (PDA) 97

Figure 7.7 Normalized execution cycles w/o RFC and w/ RFC built in 4-way as

sociative cache (FDA) 99

Figure 7.8 Miss rate for level-1 data cache memory 101

www.manaraa.com

X

Figure 7.9 Memory bandwidth required per CPU cycle with a 32K - 4way set

associative cache 103

Figure 7.10 Miss rate with 3-way and 4-way set associative cache for SPEC-95

(a) 32KB ; (b) 128KB 105

www.manaraa.com

xi

ABSTRACT

The general-purpose computing processor performs a wide range of functions. Although the

performance of general-purpose processors has been steadily increasing, certain software tech

nologies like multimedia and digital signal processing applications demand ever more comput

ing power. Reconfigurable computing has emerged to combine the versatility of general-purpose

processors with the customization ability of ASICs. The basic premise of reconfigurability is to

provide better performance and higher computing density than fixed configuration processors.

Most of the research in reconfigurable computing is dedicated to on-chip functional logic. If

computing resources are adaptable to the computing requirement, the maximum performance

can be achieved. To overcome the gap between processor and memory technology, the size of

on-chip cache memory has been consistently increasing. The larger cache memory capacity,

though beneficial in general, does not guarantee a higher performance for all the applications

as they may not utilize all of the cache efficiently. To utilize on-chip resources effectively

and to accelerate the performance of multimedia apphcations specifically, we propose a new

architecture - Adaptive Balanced Computing (ABC). ABC uses dynamic resource configura

tion of on-chip cache memory by integrating Reconfigurable Functional Caches (RFC). RFC

can work as a conventional cache or as a specialized computing unit when necessary. In or

der to convert a cache memory to a computing unit, we include additional logic to embed

multi-bit output LUTs into the cache structure. We add the reconfigurability of cache mem

ory to a conventional processor with minimal modification to the load/store microarchitecture

and with minimal compiler assistance. ABC architecture utilizes resources more efficiently by

reconfiguring the cache memory to computing units dynamically. The area penalty for this

reconfiguration is about 50-60% of the memory cell cache array-only area with faster cache

www.manaraa.com

access time. In a base array cache (parallel decoding caches), the area penalty is 10-20% of the

data array with 1-2% increase in the cache access time. However, we save 27% for FIR and

44% for DCT/IDCT in area with respect to memory cell array cache and about 80% for both

applications with respect to base array cache if we were to implement all these units separately

(such as ASICs). The simulations with multimedia and DSP apphcations (DCT/IDCT and

FIR/IIR) show that the resource configuration with the RFC speedups ranging from 1.04X to

3.94X in overall apphcations and from 2.61X to 27.4X in the core computations. The simula

tions with various parameters indicate that the impact of reconfiguration can be minimized if

an appropriate cache organization is selected.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

The world's first electronic digital computer — the Atanasoff-Berry Computer - was de

veloped at Iowa State University during 1937-42 [1]. After the advent of this first digital

computer, new technologies have been developing dramatically. This high level of improve

ment and innovation in technologies has made computer systems one of the most essential

pieces of equipment in the world. The central component in computer technology is the micro

processor, which executes tasks and controls the utilization of other components. Industry and

academia have been building high performance microprocessors with significant enhancements

in architecture and physical design. In this thesis, we propose a new architecture - Adaptive

Balanced Computing (ABC) using a Reconfigurable Functional Cache (RFC) as one possible

solution to attain high performance in current and future microprocessors. First, we compare

the reconfigurable computing with general-purpose computing in Section 1.1. Then, in Sec

tion 1.2, we describe the concept of adaptive balanced computing. Finally, the motivation and

approaches of our work are presented in Section 1.3.

1.1 General-purpose computing vs. reconfigurable computing

The general-purpose computing processor performs a wide range of functions. This ver

satility makes the general-purpose processor one of the most flexible devices in machinery; it

is also cost-effective for the versatility provided. The trade-off for this versatility, however, is

performance. Although the performance of general-purpose processors has been steadily in

creasing, certain software technologies like multimedia and digital signal processing applications

demand ever more computing power. These computations can be accelerated by embedded

processors and/or Application-Specific Integrated-Chips (ASICs). The general-purpose pro

www.manaraa.com

2

cessor is assisted by ASIC-like co-processors to provide a specialized/customized computing

unit. However, it is quite expensive to integrate an ASIC-like specialized computing unit into

a general-purpose processor due to the chip area constraint. In addition, the general purpose

processor's versatility requirement limits the level of customization.

Reconfigurable computing has emerged to combine the versatility of general-purpose pro

cessors with the customization ability of ASICs. The reconfiguration in logic functionality

allows for a number of computations to be accelerated using specialized/customized units

for the computing requirements. In a given chip area, the density of computing power in

reconfigurable logic is higher than in general-purpose processors and ASICs [2]. Another fea

ture of reconfigurable computing is the ability to execute computations at task (or function)

level. Unlike instruction-level execution in general-purpose processors, an entire function can

be mapped and executed on the reconfigurable logic. This provides a function-level (coarse

grained) optimization to increase the performance of apphcations. The reconfigurable logic

that is integrated into general-purpose processors can reduce the number of instructions by

replacing the instructions with function-level customized logic. Moreover, the on-chip reconfig

urable logic provides the conventional processor with an opportunity to exploit the parallelism

by unloading a heavy computation (an entire function) from the core processor to the logic.

Given these benefits, the major problem with reconfigurable logic is the configuration time

and the dominating chip area for the interconnects compared to logic-cell area. However, we

expect the configuration time to be relatively small in comparison to the computing time;

otherwise, the acceleration of computation would be counteracted. Because the programmable

interconnections among the logic cells are the basis for reconfigurability, the larger chip area

for the interconnects is unavoidable. However, the programenability of interconnection could

be adjusted and customized for a range of applications if an area optimization is highly desired.

www.manaraa.com

3

1.2 Adaptive balanced computing

Computing performance can be characterized by the balance [3] between the computing and

memory bandwidths of a processor. If the memory bandwidth matches the demand from the

computing bandwidth, or vice versa, the highest performance can be achieved. Nevertheless,

such an ideal computing/memory balance is unrealistic unless infinite amount of resources are

available and adjustable.

The current general-purpose processors may not be able to offer such a dynamic resource

balance because of the fixed resource configuration. A static allocation of resources was at

tempted in [4], where processor, cache and bus resources were balanced. However, a noteworthy

feature of current processors is the large amount of on-chip real-estate dedicated to storage

(such as caches, registers, and buffers). In conventional processors, more than half of an entire

chip area is cache memory [5]. The high capacity of on-chip storage provides the instructions

and data at peak speeds by reducing the stall time caused by off-chip communications. A

certain threshold of performance can be achieved with a large size of memory in a wide range

of apphcations. However, a large amount of fixed memory does not always guarantee better

performance for all applications because of different memory and computing requirements for

apphcations.

The basic premise of reconfigurability is to provide better performance and higher com

puting density [2] than the fixed configuration processors. Currently, most of the research in

reconfigurable computing is dedicated to on-chip functional logic [6, 7, 8, 9, 10, 11, 12, 13]. The

logic reconfiguration delivers greater performance by providing highly specialized computing

resources. However, the on-chip resources are under-utilized if few computations exploit the

logic. This results in a low balance between computing and memory in various applications.

If a variable type of computing resources is provided dynamically, the maximum perfor

mance over a variety of apphcations can be achieved. This dynamic resource configuration

offers an adaptive balanced computing environment to the application. In this thesis, we

present the benefits of adaptive balanced computing for multimedia and digital signal process

ing applications.

www.manaraa.com

4

1.3 Motivation and approach

There are several challenges in the design of next generation microprocessors, such as

instruction-level parallelism, compiler optimizations, higher reliability, adaptability, and mem

ory capacity/performance [14] with a billion transistors [15, 16]. To overcome the gap between

processor and memory technology, the size of on-chip cache memory has been constantly in

creasing. This trend is likely to continue even in deep-submicron technology. In a modern

microprocessor, more than half of the transistors (80% of the total transistor and up to 50%

of die area [17]) are used for cache memories. For example, Hewlett-Packard PA-8500 [18]

contains 1.5MB cache as 1MB for D-cache and 0.5MB for I-cache. The larger cache memory

capacity, though beneficial in general, does not guarantee a higher performance for all the

applications as they may not utilize the full cache efficiently. Moreover, a larger cache memory

hardly increases the performance of multimedia apphcations due to the streaming nature and

lack of temporal locality in media data [19, 20, 21].

Merged DRAM Logic (MDL) [22, 23] has been introduced to provide data processing at

peak speeds with faster accesses to data storage from computing units. This is done by

integrating static logic and DRAM onto the same die. Intelligent Memory (IRAM) [24, 25]

has also been integrated into on-chip microprocessors to reduce the bottleneck of off-chip

communication. This is accomplished by increasing the capacity of on-chip storage using

DRAM with a high density instead of SRAM. However, the integration of static logic and

DRAM generates design difficulties due to the different fabrication process technologies. This

causes degradation in terms of area and time for both logic and DRAM. For example, the

performance of logic gates in MDL is degraded due to the slower transistor switching and the

area is also increased due to the fewer number of routing layers under the DRAM process.

In deep-submicron technology, only a relatively small region can be reached in one processor

clock cycle due to the delay of interconnects. For instance, only 16% of the die length (in billion

transistors) can be reached within one cycle period (at 1.2 GHz) at O.lfim technology [26]. This

implies that a core control unit in a microprocessor may not reach all the resources in a short

cycle time. This results in more complicated signal propagation structure. For example, more

www.manaraa.com

5

driver buffers axe needed between segments of wire to reduce the effect of relatively long wire

delay. It would be beneficial to have high-demand resources within a single cycle distance. The

resources that can perform independent of the processor core could be placed farther away.

Any time-intensive computation that can be carried out independently may be scheduled on

such resources. This allows other resources to remain physically closer to the core processor

within one cycle distance.

To provide resources variable to the computing requirements, we propose a new architecture

— Adaptive Balanced Computing (ABC). ABC uses a dynamic resource configuration of on-

chip cache memory by converting the cache into a specialized computing unit, which is able to

carry out independent computations. A reconfigurable functional cache (RFC) has the ability

to operate as conventional cache memory or as a specialized computing unit [27, 28, 29]. With

a small amount of additional logic and a slightly modified microarchitecture, a part of the cache

memory can be configured to perform specialized computations in a conventional processor.

Several researchers have studied the use of reconfigurable logic for on-chip coprocessors [6,

7, 8, 10, 11]. They have shown that such logic can speed up many apphcations. An on-chip

coprocessor improves the performance of the apphcations and reduces the bottleneck of off-

chip communications. In Gaxp architecture [6], programmable logic resides on the processor-

chip to accelerate some computations. The frequently used computations are mapped to the

programmable logic. If an application does not need the logic, these functions remain idle.

PipeRench [30] reconfigures the hardware every cycle to overcome the limitation of hardware

resources.

Xilinx Virtex FPGA family [31] allows partial reconfiguration. However, the dynamic par

tial reconfiguration can only be done at the granularity of a configurable logic block consisting

of four 4-input look-up tables (described in Section 2.1). An advantage of this architecture

is that a number of smaller configuration memory blocks can be combined to obtain a larger

memory. However, a fine-grained memory cannot be synthesized efficiently in terms of area

and time. In particular, providing a large number of decoders for small chunks of memory is

expensive.

www.manaraa.com

6

These observations motivate ABC to use a reconfigurable module which works as a function

unit as well as a cache memory. Our goal is to develop such a reconfigurable cache/function unit

module and integrate it into the existing microarchitecture to improve the overall performance

with low area and time overhead. The reconfigurable cache/function unit module can be

implemented using multi-bit output LUTs in the cache memory array, which is similar to

FPGA-like logic. The expectation is that significant logic sharing between the cache and

function unit would lead to relatively low logic overhead for an RFC. If the area overhead

of an RFC exceeds the area of the dedicated logic for that function, or if the time overhead

of cache is significant (if the time increases more than 5% — 10% - commonly treated as a

significant increase), this is too big a compromise.

We integrate the RFC into a RISC superscalar microprocessor to build a computer which

uses Adaptive Balanced Computing. To implement the RFC in the existing cache structure,

we use two types of cache organizations, a multiple-set associative cache and a cache memory

further partitioned into sub-cache blocks. Some of these cache blocks can be configured as

specialized computing units. This will reduce the cache memory capacity when such a recon

figuration is in effect. However, we propose to organize the cache partition in such a way that

the performance penalty is minimal. The entire cache organization with the RFCs is described

in Section 5.2.2. Using various cache mapping organizations, we study the overall impact on

the performance of selected benchmarks, such as multimedia and DSP applications.

There are some potential shortcomings with integrating RFC into a conventional micro

processor. Reconfiguring resources on-the-fly may affect the existing architectural behavior.

For example, if a portion of the cache is converted into a functional unit, it increases the miss

rate due to the smaller cache size. It may also require significant context switching due to the

cache sharing between configurations and regular program data. However, we are targeting

applications in which a large cache is not used effectively (e.g. multimedia applications). This

implies that the smaller cache size by the reconfiguration does not affect the overall cache

behavior significantly. In addition, our microarchitecture does not require any large amount of

context switching. Loading configuration data initially is the only context switching required

www.manaraa.com

7

when the RFC is configured as a computing unit. Other small amounts of configuration data

loaded partially at run-time are not likely to be an outstanding problem. By using the existing

microarchitecture, the integration of RFC does not modify the entire architecture significantly.

In cache design, the size of cache memory increases due to the additional logic and intercon

nections. For high performance computing, additional chip area would not be a significant

problem in the microprocessor design. The increased cache area may increase the cache access

time in a conventional cache. In another cache model, the proposed new cache structure may

decrease the time. The estimations for both models are presented in Section 4.4.

1.4 Thesis organization

The background and related work to our research is described in Chapter 2. In Chapter 3,

we describe the problem statement of our work. Chapter 4 describes the architecture and de

sign of a reconfigurable functional cache (RFC) with the functional unit and cache operations

with multi-bit output LUTs. The ABC microarchitecture is described in Chapter 5. Chap

ter 6 presents examples of functions (Multiply-and-Accumulator and Distributed Arithmetic)

mapped to the RFC. In Chapter 7, we present the performance results of our architecture.

Finally, we conclude the thesis in Chapter 8.

www.manaraa.com

8

CHAPTER 2. BACKGROUND

To better understand the problem, presented in. this thesis, we describe the characteristics

and architectures for FPGAs, reconfigurable logic in a processor, memories with computa

tion, SIMD extension in microprocessors, and a conventional cache memory structure in Sec

tion 2.1, 2.2, 2.3, 2.4, 2.5, respectively. Characteristics of cache memory in media applications

is also presented. A typical superscalar microprocessor is described in Section 2.6. Finally, we

discuss about the trends of future microprocessor in Section 2.7.

2.1 FPGAs

We use Xilinx [32] terminology in describing an FPGA (Field Programmable Gate Array)

architecture. FPGAs can be viewed as a two-dimensional array of CLBs (Configurable Logic

Blocks) - CLB is a primitive PE (programmable element) - with interspersed routing channels

as shown in Figure 2.1. Each CLB consists of configurable gates realized through LUTs (Look

up Tables). The CLBs are connected and communicate through flip-flops and programmable

interconnections implemented using programmable pass gates and multiplexors.

LUTs are the essential component to implement any logic function on FPGAs. An n input

LUT depicted in Figure 2.2 can represent 22" number of functions. An LUT usually has

four inputs and one output out of an S RAM-based memory to keep the overall operation and

routing efficient [33]. However, the one-bit output granularity of each LUT results in a large

interconnect area - even larger than the area of LUTs - and delay due to a number of switches

for the programmability [34].

Using these programmable elements (PEs), user-defined functions can be implemented on

FPGAs. Initial configuration is done by loading all the necessary configuration data into the

www.manaraa.com

9

Interconnection

CLB CLB CLB CLB

CLB CLB CLB CLB

Figure 2.1 FAG A structure

PEs and configuring the programmable interconnection. Once configured, it performs the

static function until reloading other configurations. In addition, configuration and computa

tion cannot be performed concurrently due to technology difficulty between configuring and

computing on FPGAs. The configuration of Xilinx Virtex FPGAs [31] is processed in three

phases. First, the configuration memory is cleared. Then, the configuration data is loaded.

Finally, the logic is activated by a start-up process. They also support readback of the contents

for all the flip-flops/latches along with the configuration data in the configuration memory for

verification and real-time debugging.
2An entries

^ MUX /

1-bit output

Figure 2.2 An n input Look-Up Table (LUT) with one-bit output

FPGAs map and execute virtually any kind of applications by writing the contents of LUTs

based on the applications to represent various logic functions and configuring programmable

interconnection to propagate data/control signals. Most of the common applications performed

in FPGAs are DSP applications [35, 36].

www.manaraa.com

10

2.2 Integration of processor and reconfigurable logic

Several researchers have investigated the issues associated with coupling processors and

reconfigurable logic on a single die [12]. One motivation behind the idea is to give additional

resources for computing-bound programs. Most of these approaches are targeting embedded

and compute-intensive applications, such as video/audio processing, DSP, encryption, sequence

matching applications, etc. in on-chip processor. In addition to the additional physical hard

ware, the architectural integration of reconfigurable logic into processors may require either a

new instruction set (compiler-driven) or hardware/software co-design to exploit the logic.

2.2.1 Garp Architecture: Reconfigurable logic in a processor

Garp [6] architecture extended to MIPB-U instruction set incorporates an on-chip pro

grammable logic - array of logic blocks. The reconfigurable array consists of control and logic

blocks. The basic quantity of data in the array is 2 bits. Each logic block similar to CLBs in

Xilinx 4000 series [37] can implement a function of up to four 2-bit inputs. The arrays con

nected through local/global wires vertically and horizontally carry the 2-bit quantities grouped

in pairs. The loading and execution of array configuration is under the control of the main

processor.

The logic block is controlled by the processor with a number of new instructions to configure

the reconfigurable array as well as to move the data between the array and the processor's own

registers. Garp also allows partial array configurations at a minimum of one row. The recon

figurable logic also has direct access to main memory through additional data buses between

the logic and off-chip memory. Various structured computations are mapped and executed in

the programmable logic and interconnection, but there are no resource reconfigurations.

2.2.2 DPGA-coupled microprocessor

DPGAs (Dynamically Programmable Gate Arrays) have constructed a hybrid architecture

of FPGAs and SIMD arrays by reconfiguring cached configurations and performing different

operations simultaneously, respectively [38, 39]. Array elements consist of 4-LUTs with a

www.manaraa.com

11

4rContext memory using DRAM depicted in Figure 2.3. The multi-context of configuration

data is provided by on-chip memory (context DRAM) for multiple array functionalities with

high/local on-chip bandwidth to reconfigure rapidly among different computations in each

array element. 4x4 array elements are grouped into a sub-array with local interconnects.

Each sub-array is connected and routed via global crossbar interconnections.

4-context DRAM

Multiplexers

Context 4

Context!

Context 2

One of four fonctions

Figure 2.3 4-LUT with 4-context DRAM

The computational power and flexibility of DPGA allow conventional microprocessors to

accelerate compute-intensive and special-purpose applications through a coprocessor [7]. The

integration of DPGA into microprocessors requires additional instructions for the computa

tional cooperation and communications between the processor core (fixed logic) and reconfig

urable logic. Pre-defined subroutines for the reconfigurable logic - which would be assisted

by hardware synthesis tools - would be used in high-level programming languages as library

routines for the acceleration of applications. Tightly coupled DPGA processing arrays - re-

configurable logic - reduce the limitations of the communication between the processor and

reconfigurable logic as well as the overheads for the reconfiguration.

2.2.3 ConCISe

ConCISe proposes a smart compilation chain with a hardware synthesis tool which gen

erates application-specific custom instructions to support CPLD-based RFU (Reconfigurable

Functional Unit) in RISC micro-architecture [40]. Thus, the RFU implemented using PAL

www.manaraa.com

12

(Programmable Array Logic) and PLA(ProgrammabIe Logic Array) executes the different

customized instructions generated at compile-time.

In the microarchitecture, the RFU is placed in the execution stage of a standard RISC

pipeline to provide an extra functional unit. The custom instructions to be executed in the

RFU contain the RFU configuration for decoding a specific configuration and register numbers

for the register-register operations. The main features of the microarchitecture are as follows.

It avoids partial reconfiguration to reduce the reconfiguration latency by adding more resources.

It also minimizes logic complexity and optimizes resource utilization at compile-time with a

logic synthesis tool. The compilation chain makes it easier for the application programmers to

exploit the RFU in their applications.

The compilation chain reduces/eliminates the reconfiguration overheads by encoding mul

tiple custom, instructions in a single RFU configuration. First, it detects/selects the data-flow

sequences mapped to RFU potentially in a conventional programming code. The possible

candidates are limited to arithmetic and logic instructions. Then, a translator converts the

candidates into hardware description language. A logic synthesis tool verifies the timing and

the possibility of mapping the function. This procedure is repeated many times to find suitable

functions to the RFU. It also generates the corresponding configuration data. Finally, assem

ble/link and generate the executable. This procedure generates no change in a conventional

program design flow.

2.3 Memory systems with computations

Various memory systems enhanced for computations to overcome the performance gap be

tween processor and memory systems have been presented in the last decade. Most of the

computational memory system models attach logic to a conventional memory system (partic

ularly for DRAM) for a faster and easier communication between computing unit and memory

system referred to as Merged DRAM Logic (MDL) unlike Intelligent Memory (IRAM) [24, 25].

IRAJVI integrates only Dynamic RAM (DRAM) into on-chip microprocessor to reduce the off-

chip bottleneck. This also gives a distribution of tasks by off-loading data-intensive applications

www.manaraa.com

13

from the core processor to the memory systems. Another possible direction is to reconfigure

memory itself for the resource utilization. One approach is presented in [42], which uses part

of cache memory for different purposes of memory (such as buffers and look-up tables) on

demand from applications. Reconfigurable cache addressing [43] is developed to provide data

to computations without thrashing cache blocks.

2.3.1 Active pages

Active Pages [22] is a computation model which shifts data-intensive applications into the

memory system. An implementation of Active Pages on RADram (Reconfigurable Architecture

DRAM) is based on the integration of reconfigurable logic (FPGA-like logic) with DRAM to

keep the processor at peak speeds by off-loading applications to the memory system. To achieve

the proper transfer of computations between processor and memory system, Active Pages par

titions an application into processor-centric and memory-centric tasks. The processor-centric

partitioning is for complex computations while the memory-centric is for for data manipulation

and integer arithmetic.

In the integration with a microprocessor, the interface to Active Pages is similar to a con

ventional virtual memory system. The processor controls Active Pages and communicates with

them through a memory reference-like functions (like a series of memory-mapped operations) in

a code sequence to write/read operands and results, set the particular pages, allocate/bind the

group of pages for inter-page references. They are also synchronized by issuing synchronization

variables.

Active Pages can exploit high parallelism by executing applications in both processor and

memory systems simultaneously. This is accomplished by loading simple, application-specific

operations in the memory system. One problem is the fabrication of Merged DRAM Logic

(MDL). This integration may result in the performance degradation of logic and poor density

of DRAM.

www.manaraa.com

14

2.3.2 FlexRAM

FlexRAM architecture [23] places simple-compute engines in DRAM arrays to use as general

purpose processing unit or otherwise as plain DRAM. In addition, to control and increase the

usability of those engines a narrow-issue superscalar RISC core with small instruction and

data caches is included on each memory chip based on Processor-In-Memory [41]. The RISC

core also coordinates the compute engines with the host processor. Each chip has 64 memory

arrays, which contain their own 32-bit fixed-point RISC engine.

To initiate tasks in FlexRAM, the host processor should send a signal to the small RISC

processors with a write to a special memory-mapped location. The host also passes the address

of the routines to be executed in the memory system. The FlexRAM processor in memory

informs the host processor the completion of the tasks. The host processor and the FlexRAM

processor share the virtual memory. For the inter-chip network, each FlexRAM chip commu

nicates with other chips through an additional interconnection controlled by each FlexRAM

processor.

2.3.3 Reconfigurable caches

Another type of reconfigurable cache design proposed in [42] enables cache SRAM arrays

partitioned dynamically to be used for different processor activities that can benefit from extra

resources instead of conventional cache memories. Some of the potential applications could

use the partitions of reconfigurable cache as look-up tables/buffers for instruction reuse and

hardware prefetching, or as compiler-controlled memory.

The new reconfigurable cache structure is achieved by partitioning (isolating) the physical

data bank for one way out of a set associative cache memory. The partitions for the other

activities and normal cache operations can be addressed and differentiated by multiplexing

the corresponding addresses and signals. A special register called cache status register tracks

the number and size of the partitions, and controls the signals for appropriate partitions.

Overall, the new cache organization requires few modifications to a conventional cache design

with a small increase on cache access time (less than 6%). The detection mechanism used

www.manaraa.com

15

to reconfigure the cache memory in a code sequence can be software or hardware controlled.

When reconfiguring, the current data in the cache is moved between partitions or written back

to lower memory levels, called cache scrubbing. They expect the frequency of cache scrubbing

to be low (only once at the start of applications).

2.3.4 Cache tiling

A new cache architecture for windowed image processing is developed as cache tiling in [43].

Processing data in large structuring elements in small caches maps input data to the same cache

locations. This results in the repeated replacement of data in the same location in a cache,

called trashing. Predictable memory access patterns for image processing are exploited to

eliminate the cache trashing. This is done by the linearization of data accesses in memory.

The data access linearization is achieved using a fast address translator to exchange the address

bits in a cache address. This increases the cache efficiency. It eventually improves the overall

execution time by reducing the number of memory accesses.

Cache tiling allows dramatic improvement in caching efficiency for small caches indepen

dent of compiler optimizations. Programs are not affected providing a transparent solution to

improve caching. System code, compilers, or profiling programs can determine the blocking

necessary for the best performance.

2.4 SIMD extension in microprocessor

The demand of multimedia-rich applications has been and will be dominating applications

in PCs. Higher performance for these applications is preferred in general-purpose microproces

sors, which results in architectural extensions. The media applications are compute-intensive

with localized recurring loop operations involving small native data types. In addition, they

have large working sets and are streaming applications, which need an efficient data caching

mechanism. These applications will get more benefit from well-structured/specialized units

and instructions.

This motivates a microarchitecture to incorporate SIMD (single-instruction, multiple-data)

www.manaraa.com

16

extension to exploit the parallelism at instruction-level. To achieve instruction-level parallel

execution, the microprocessor packs the small native data with at most 8 data elements for

the same operation in one cycle with new media instructions (without special purpose proces

sor or dedicated hardware). The common operations in SIMD media instructions are arith

metic/logical operations, data movement/reorganization, and type conversion with the packed

data types in 8(one-byte), 4(word), 2(doubleword), and l(quadword) data elements. The

packed data operation is handled by saturating instructions which truncate the result in case

of over/underflow. Since the multimedia data has less temporal locality, which implies that the

data is processed once and discarded, it may cause the cache trashing problem. This motivates

the use of special instructions to prefetch the data for faster processing and less interference

with the cache behavior.

By sharing the existing processor resources, the SIMD extensions are integrated with a

minimal microarchitecture modification and a small amount of additional units. For exam

ple, the media instructions share the FP-registers with the floating-point instructions in Intel

MMX [44]. Thus, the advantage of SIMD extension is to accelerate the media applications

on general-purpose microprocessor without the aid of special purpose processor or dedicated

hardware. Another main factor of the SIMD extension is the compatibility with the existing

Instruction Set Architecture (ISA) and Operating Systems.

There is a trade-off in the SIMD extension between embedded and exclusive architectural

extension/support for the media applications. We describe the trade-off and difference in two

microprocessors for the extension with respect to compatibility and additional resources in

Section 2.4.1 for Intel MMX/SSE and Section 2.4.2 for PowerPC's AltiVec.

2.4.1 Intel Pentium MMX/SSE ISA Extension for Multimedia

Intel MMX/SSE [44, 45] has small modifications in the part of existing datapath and shares

the common contexts - the core pipeline stages (datapath) - and switches the contexts between

the SIMD extension and conventional architecture.

www.manaraa.com

17

MMX: In MMX, no new states (such as register sets, control registers, and new condition

codes) are added for the compatibility with existing IA (Intel Architecture) and OS. This makes

the extension embedded to the Intel x86 architecture. The MMX media instructions share the

existing 64-bit FP (Floating Point) register set as the MMX registers with FP instructions

for the compatibility. The sharing restricts a code sequence to be partitioned into FP and

MMX codes to make infrequent and simple context switching. Those two types of code should

not be executed simultaneously. This results in the full IA compatibility. With the same

techniques for FP interface to OS, such as FSAVE and FSTORE, the context switching is

done by saving and restoring the data in the shared FP registers before executing FP/MMX

data. The context switching from MMX to FP is performed by EMMS (empty MMX state)

operation. Using FP reg tab bits (status of each register), FP data can be also protected from

the MMX instructions.

As mentioned above, MMX supports parallel operations on multiple small packed data

elements with 57 specialized and enhanced instructions for media applications. MMX also

has similar instructions like other microprocessor's extension described above. For instance,

it supports packed shift instructions to realign the misaligned memory access similar to Al-

tiVec's permute instruction. Data transfer to memory for the packed data is done by the new

special instructions (MOVQ: move quadword (64b), MOVD: move packed-word (32b)). MMX

instructions use 8 MMX(FP) registers for packed data and 8 integer registers for loop control,

addressing, etc..

The MMX instructions can be programmed using the assembly extension and optimized

at compile-time. A code sequence may contain both conventional code and MMX code for

applications to be executed conditionally on detection of MMX technology.

SSE: Streaming SIMD Extension (SSE) has additional features which supplement MMX

technology. SSE adds SIMD-FP execution units and 70 new media instructions for floating

point computations in media applications. For the streaming nature of data access from/to

memory in media applications, SSE employs prefetching and streaming load/store instructions.

It reduces the cache misses by keeping only basic/common data through the entire data set

www.manaraa.com

18

in a cache memory. The different contexts and resources from the MMX technology are as

follows.

• new SIMD-FP instructions and media instructions.

• new conversion instructions: from SIMD-FP to MMX for packed data and from scalar-FP

to IA-32 integer for scalar data.

• Adding a new state - SIMD-FP FU and eight 128-bit registers for SIMD-FP.

This reduces the implementation complexity because of no sharing between contexts.

There is no context switching between SIMD-FP and MMX/X87. Thus, SIMD-FP and

MMX/X87 can be executed concurrently with separate exception handling. It also pro

vides wide and fast FP resources. The 128-bit processing (4-wide micro-instruction)

is accomplished using two 64-bit micro-instructions (2-wide micro-instruction) for the

compatibility without 128-bit datapath.

» memory streaming instructions to prefetch instructions and wider bus systems to memory

- which results in high memory throughput.

• decoupling memory prefetch from retirement of subsequent instructions for the concur

rent execution of the computational stream and the prefetched memory access.

Other major microprocessor vendors have introduced a similar SIMD architectural exten

sion, AMD 3DNOWÎ Technology [46], HP MAX-2 [47], and Sun Sparc's VIS [48] as well.

2.4.2 AltiVec in PowerPC

AltiVec [49] adds exclusive and independent datapaths, such as the 128-bit vector processing

unit, from the existing microarchitecture to free up the core datapath for other conventional

application sequence flows. This results in less context conflict/switching between the SIMD

extension and conventional architecture compared to Intel's MMX/SSE. In addition, AltiVec

allows x86 and SIMD extension instructions to be executed in parallel without interfering with

each other. However, it occupies a larger portion of die area and needs more complicated

www.manaraa.com

19

management due to two sub-states in one global state. The independent architectural support

in AltiVec requires a different optimization algorithm at instruction-level from the conventional

scalar ISA.

AltiVec implements fully pipelined functional units which have low latency - one cycle per

computation in most cases. Simple and compound (merged with two or three instructions)

operations can be performed by two issues per cycle for ALU-class and permute-class instruc

tions. Other media instructions are similar to other SIMD extensions described in Section 2.4.1.

AltiVec also minimizes the number of memory accesses using the special permute instruction

for load/shift for misaligned memory accesses.

The architectural support for the entire range of multimedia processing in AltiVec is

achieved through the following additions - a large vector register file, full-range data-type

support, four operand non-destructive instruction format, permute capability, powerful SIMD

instruction set, and enhanced and adapted data-prefetch streams to the media applications.

2.5 Cache memory

In Section 2.5.1, we explain how a cache memory works and is organized in architecture

and design. This describes the basic concept of conventional cache memories, such as address

ing, mapping, and policies. Then, we describe the characteristics of cache memory in media

applications in Section 2.5.2.

2.5.1 Cache memory architecture and design

Cache is the first level of memory hierarchy in a microprocessor and a subset of lower

memory hierarchy, such as main memory and hard disk. According to the principle of temporal

and spatial locality, the cache memory contains data or instructions to be accessed by the

processor activities in the near future. There are three types of cache organizations, direct-

mapped, set associative, and fully associative caches. In a direct mapped organization, each

data block in lower-level memories can be placed only into one location in the cache. If a block

can be placed anywhere in the cache, the cache is fully associative. If a block of lower-level

www.manaraa.com

20

memories can be placed in a n number of locations in the cache, it is referred to as n-way set

associative. Direct-mapped cache is just 1-way set associative and fully associative cache is

n-way associative for n blocks. Since a cache memory maps a number of blocks in lower-level

memories - more than the number of blocks in the cache, the blocks to be placed into a same

location need to be identified. Each block is identified by an address tag, which is a part of

block address. The tag is the number of block frames in a lower-level memory partitioned by

the number of sets of cache memory (in direct mapped or one way). Another part of block

address is an index that is used to select an appropriate set. The remaining part of an address

is the block offset which can point out the desired data within a block. When a miss occurs,

an appropriate block in the cache will be replaced by the replacement policy, such as random

or Least-Recently-Used (LRU). Data can be written to a cache memory in two policies, write-

through or write-back. The write-through policy is commonly used in a multi-processor system

for the memory consistency while the write-back policy is used in a uniprocessor system to

reduce the off-chip memory traffic.

There axe three categories of the causes of cache misses : compulsory, capacity and conflict.

The first access of data will always be missed, called compulsory or first reference misses. This

may often occur in a large cache memory due to the misses of all the blocks in the cache at

the very beginning. A cache memory cannot contain all data in lower memories due to the

lack of capacity. This results in blocks of data to be mapped to the same location in a cache

memory. This conflict requires a replacement of block. If too many blocks are mapped to the

same location, for example low-associativity, more conflict misses occur.

Conventional cache memory consists of an array of S RAM-based memory cells, row/column

decoders, multiplexers, sense amplifiers, and comparators depicted in Figure 2.4. Data and tag

memory banks have the same organization described above with a different column size. The

arrays consist of the storage cells (SRAM cell implemented using two cross-coupled inverters),

horizontal wordlines, and vertical bitlines. A cache memory read operates as follows. The

index and the block offset of an address are propagated to the row decoder and the column

decoder, respectively. One signal from the row decoder selects one cell-row in the arrays for

www.manaraa.com

21

Word-lines
Bit-lines

Data Array Tag Array Address

Column
Decoder

Comparator Output Driver

Sense Amplifier Sense Amplifier

Multiplexer Multiplexer

Tag Index Block
offset

Hit or Miss Data

Figure 2.4 Conventional Cache memory structure

tag and data. The selected block is transfered through the bitlines. A desired data word in

the block is selected by the column decoder through the multiplexer. For a faster propagation

of data from the array, sense amplifiers are used at the end of multiplexers. The tag part is

compared with the data from the tag array to check if the memory access is a hit or miss.

If a hit occurs, the data is passed to the processor core. If a miss, the address is passed to

the lower-level memory and the miss signal is issued. Therefore, there are several components

which determine the cache access time - decoder, wordline, bitline, column multiplexor, sense

amplifier, comparator, and select data output delays - as modeled by CACTI [50]. The access

time of tag array is often higher than that of data array due to the additional tag comparison.

A cache memory can work as a large number of input LUTs (like CLBs in FPGAs described

in Section 2.1), for example, the addresses as input and the data words as logic functions.

However, only one logic function is implemented in the cache memory because the LUT is

controlled by one set of input-bits. While one large LUT could represent multiple stages of

logic as one memory read by synthesizing a number of small LUTs (logic), it requires more

effort from logic synthesis (and makes it less effective).

www.manaraa.com

22

2.5.2 Cache memory characteristics in media applications

Experiment results on cache effectiveness for media applications in [19, 20, 21, 43] show

that a larger cache size hardly increases the performance in selected media applications due

to streaming data nature and low temporal locality. However, data in media applications

has higher spatial locality. In addition, all the data of multimedia applications cannot fit

into a cache memory because the working sets of these applications are very large and are

accessed in a streamed fashion. This directs the microprocessor to prefetch the streaming

data without losing frequently used data in the cache [45]. Instead'of cacEiing the data on

a processor, streaming load and store are more convenient and faster than the conventional

caching strategy since streaming operations can remove the complicated cade operations for

the memory hierarchy consistency. This results in a media processor to be a kind of vector

processor.

2.6 Superscalar microprocessor

Superscalar microarchitectures [52, 53] issue and execute multiple instructions every cycle to

exploit the instruction-level parallelism. An additional feature in a superscalaw microprocessor

is an out-of-order issue and execution by resolving the control and data dependencies. A typical

superscalar microprocessor depicted in Figure 2.5 operates as follows. Multiple instructions

are fetched from the instruction cache every cycle in the fetch stage and then decoded in

the dispatch stage. The artificial data dependency, such as write-after-writ*e and read-after-

write, is checked and resolved by the renaming registers in the dispatch stage and the data

forwarding mechanism between the stages. The instructions are dispatched to the issuing

reservation stations. In the centralized/distributed reservation stations, ths instructions are

issued, then executed in a functional unit and, depending upon the operatiom of instructions,

may access the memory. In the write-back stage, the instructions update "the computed or

loaded data into the register file. The issue and execute can be done in out-o-f-order; however,

the instructions are committed in-order in the commit stage to avoid wrong operations in the

instruction stream by mis-speculation (for example, by branch mis-prediction) and to support

precise exception handling.

www.manaraa.com

23

reorder buffer & commit

memory Interface

Register
Files

D-Cache

Decode

Dispatch

Renaming

Branch

I-Cache FIT s

Figure 2.5 A typical superscalar microprocessor

2.7 Trends of future microprocessors

In deep-submicron technology, we can have billions of transistors running at gigahertz

frequencies [14, 15, 16]. This trend promises a lot of challenges and possibilities in micro

processor architecture and design. However, certain complexities and constraints inherent to

deep-submicron technology will limit the performance of future microprocessors accordingly.

Microprocessor performance has been improved mainly by technology scaling. As the

feature size scales down, the device sizes at the transistor-level shrinks as well. This allows

for more devices and a smaller clock cycle time on a chip. However, the interconnect delay,

especially, for a global interconnect, does not scale down as much as the gate (device) delay

because it remains unchanged due to the RC (resistance and capacitance) time constant (i.e., as

feature size reduces, the capacitance of the wires also reduces, but the resistance increases due

to the narrower width and thinner height in the wire.). This is the cause of the main physical

constraint in microprocessor design for high performance. In addition, the power and cost will

grow as the number of gates increases. Another behavioral constraint is program control and

data dependencies in a code sequence, for example, branches and WAR (write-after-read) data

dependencies, (even though more resources are available on the chip).

www.manaraa.com

24

One temporary solution to the interconnect delay is to make the height of interconnect

thicker to reduce the resistance and use copper metalization. However, this will not be suffi

cient in extremely small feature sizes. It also causes cross talk between adjacent wires, which

increases wire capacitance and power consumption since they are very close due to feature size

shrinkage. In the previous technology, we have used the RC time model to identify the charac

teristics of timing problems in design. Now, we need to consider inductance (electromagnetics)

that is caused by the very narrow interconnect, which results in the RLC model. Due to the

interconnect delay, the signal drive region (in which signal propagation can be reached within

one clock cycle) will have less number of gates and relatively smaller area than larger feature

size technology. For example, only 16% of die area (in billion transistors) could be reached

within one cycle period (at 1.2 GHz) at 0.1 fim technology [26]. The impact on VLSI design

is that the interconnect delay and complexity will be the dominating factor for delay, which

motivates a new design paradigm and flow of microprocessor, such as interconnect-driven de

sign. For example, we need to avoid the congestion of wires in critical paths. This mismatch

between gates and interconnects gives a gap between gate delay and propagation delay via

interconnects. To match the wire delay to the faster gate delay, more driver buffers between

segments of wire are necessary. For instance, long distance travel of a signal requires a large

number of buffers and registers. However, adding more buffers and registers may not be a

solution since the region (or the number of gates) that can be reached in one CPU clock cy

cle would be smaller and smaller as the feature size decreases. This is another factor which

architecture needs to account for.

The smaller feature size reduces the clock cycle time by reducing the corresponding ca

pacitance, which gives higher performance. Since the gate (logic) delay largely decreases, the

clock overhead - setup time, clock to output delay, and clock skew - takes a significant fraction

of the cycle time. Therefore, a very careful clock distribution across a chip and other circuit

techniques to improve cycle times are necessary. Here are some of the possible techniques to

improve the cycle time and reduce the effect of clock overhead: sense-amplifier-based, hybrid

latch, semi-dynamic FFs, asynchronous logic to eliminate the global clock dependency, and

www.manaraa.com

25

dynamic logic to reduce and hide clock overhead with higher area/power.

A deeply pipelined microarchitecture may not produce high performance due to the signif

icant fraction of clock overhead in pipeline cycle time. In addition to the clock overhead, the

unexpected control dependencies and exceptions in a code may nullify the high throughput

of pipeline by flushing all the current pipeline stages and executing all of them again. To

increase the ILP (Instruction-Level Parallelism), we may increase the instruction window to

be issued in one cycle. However, this also generates an additional overhead. For example, a

larger instruction window needs more time to check and verify the content/name of registers

and the result of execution in the renaming stage in a superscalar microprocessor. Both deeper

pipeline and wider instruction window for higher ILP do not produce higher performance lin

early. Therefore, this requires an optimal number of pipeline stages and instruction window

size.

The capacity of computation and memory in a microprocessor is increasing dramatically

in deep-submicron technology. However, this trend may restrict a highly localized placement

of resources on a chip to reduce the interconnect delay and power dissipation because of the

small signal drive region. As we observed above, the deeper pipeline and larger instruction

window specially in deep-submicron era do not produce high performance due to the significant

time/area overhead to support such a microarchitecture. This implies that a centralized pro

cessor control and execution may not be a good solution because it adds a huge interconnect

delay. This indicates that the "locality" of complex architectures distributed over the die is an

important design factor.

www.manaraa.com

26

CHAPTER 3. PROBLEM STATEMENT

Single-Instruction Multiple-Data (SIMD) extensions for multimedia applications are incor

porated in conventional microarchitecture with a small amount of architectural change and

design modification. Thus, SIMD extensions integrate the SIMD parallel computation model

at instruction-level to the current general-purpose processor. However, the main restriction of

SIMD extensions are the compatibility with the existing Instruction Set Architecture (ISA)

and Operating Systems (OS). This causes significant context switching and compiler assistance.

Another problem is the balance between computing and memory bandwidth. To match the

balance, a streamed load/store of data from/to memory is employed. Moreover, the additional

resources to support the media instructions should be as minimal as possible for effective use

of die size and removing frequency impact [45, 49].

This kind of fine-grained architectural support (instruction-level) for multimedia appli

cations needs less physical design effort and is easier to integrate into existing architecture.

However, the fine-grained support may require low level optimizations at the instruction-level

to exploit the benefits. For instance, a great deal of coding optimizations and significant com

piler assistance may be required. It also needs unnecessary architectural support because of the

compatibility between the media instructions and the conventional instructions as described

above. Due to the fine-grained support requirement, the control/execution units for the SIMD

extensions may need to be centralized to the core processor.

These shortcomings of fine-grained architectural support motivate exploration of coarse

grained architectural support (function-level) for media applications. For example, we may add

function-level resources like ASICs to accelerate those applications. However, coarse-grained

support requires highly customized units which are not cost-effective in a general-purpose

www.manaraa.com

27

microprocessor. Instead, we have developed a dynamically reconfigurable functional cache

(RFC), which works as memory or as LUT-based computing units. The RFC can support

the coarse-grained architecture feature by mapping and executing an entire function with

small additional logic and modifications in the existing architecture and design. One problem,

however, is that the compile time optimization would have to operate at function-level. For

example, we may not control or modify the function's behavior freely if the computing unit

is already specialized to the functions. Conversely, the coarse-grained support could simplify

coding and optimization for programmers and afford specialized/customized computing units

for media applications in a general-purpose microprocessor. The simple compilation shown

in Section 5.2.5 can be realized with pre-defined function calls in high-level languages to be

performed by slightly modified load/store instructions. More pre-defined function calls may

be added in the future through the co-design of hardware and software. Moreover, highly

structured and intensive computation could be decoupled from the core processor to reduce

the overheads of centralized architecture and design described in Section 2.7.

SIMD multimedia applications with large working streamed data sets, in which data is

used once and then discarded [45], can be accelerated by a specialized computing unit. A

larger on-chip cache hardly helps these applications due to the streaming nature and lack of

temporal locality as mentioned earlier. Since SIMD applications need less reconfiguration at

run-time (by the nature of SIMD), the run-time reconfiguration does not affect the overall

execution time significantly once we configure the RFC as a function unit. The Multiply-

and-Accumulation (MAC - core of FIR) and ROM-based Distributed Arithmetic (DA core

of DCT/TDCT) functions are good examples of such SIMD applications. Such structured

computations are more easily targeted for a reconfigurable functional cache especially within

the low area and time overhead constraints. The LUT-based computing unit can be organized

with unique and common configuration data. For instance, different types of computation

using MAC and DA can be mapped to the RFC by changing contents of LUTs.

In this thesis, we propose a microarchitecture as a combination of RISC-type and CISC-

type microarchitecture to support Adaptive Balanced Computing (ABC) through exploiting

www.manaraa.com

28

Reconfigurable Functional Caches (RFCs). The basic concept of this combination is as follows.

The interface and instructions are as simple as a RISC-type architecture while the operation is

performed in multiple processes as a CISC-type architecture in a dense format of instruction.

Thus, in the proposed architecture, the actual computation, which is initiated by the RISC-type

instruction, is processed using specialized computing units as common primitives for DSP and

multimedia applications. On demand from the applications, we simply add more functions to a

conventional processor with with minimal amount of additional logic and time penalty. Unlike

the SIMD extensions, the ABC microarchitecture involves minimal context switching between

conventional instructions and the instructions supporting RFCs with a little modification of

compiler and existing programs. This results in the combination of RISC-type instruction set

with CISC-type computations. The proposed microarchitecture may also form a basis for a

dynamic distributed microarchitecture.

www.manaraa.com

29

CHAPTER 4. RECONFIGURABLE FUNCTIONAL CACHE (RFC)

In this section, we describe how the proposed reconfigurable cache module architecture

(RCMA) is organized and how it works. First, we introduce multi-bit output LUTs to be

used in the reconfigurable functional cache (RFC) in Section 4.1. Second, we show constant

coefficient multipliers using multi-bit output LUTs in Section 4.2. Third, we describe the core

design of RFC architecture, such as how to partition the memory blocks and connect them, and

how it operates as a cache memory and a special function unit in Section 4.3. In Section 4.4, we

compare and estimate the cache access time of RFC with respect to memory cell array cache

(with one memory cell array) and base array cache (with a number of partitioned memory

cell arrays of a conventional cache structure for a faster access time). The configuration and

scheduling of the module are described in Section 4.5.

4.1 Multi-bit output LUTs

In most FPGA architectures, a Look-up table (LUT) usually has four inputs and one output

to keep the overall operation and routing efficient [33]. However, an S RAM-based single output

LUT does not fit well with a cache memory architecture because of a large area overhead for the

decoders in a cache with a large memory block size. Instead of using a single output LUT, we

propose to use a structure with multi-bit output LUTs. Such LUTs produce multiple output

bits for a single combination of inputs and are better suited for a cache than the single output

LUTs. Since a multi-bit output LUT has the same inputs for all output bits, it is less flexible

in implementing functions. However, this is rather inconsequential for our problem domain. A

2-bit carry select adder and a 2-bit multiplier or a 4 x 2 constant coefficient multiplier (all need

the same size, up to 6-bit output, of LUT) are depicted in Figure 4.1(a) and (b), respectively.

www.manaraa.com

30

4htf« p

carry

2bit adder

LUT
16 line

_^J
sumfltfl

(a)

3bicsGn=l | 3bitsCtn=0

3btts Gn=I [3bit$ C&W)

3bilxGn=l j 3bits Gn=0

3biuGn=li 3biuGn=0

3bits Gn»l \ 3biu Qn#0

3bits Git=l | 3bits Gn=0

Jbits Qn=l { 3bits Gn=0

3bits Gn=lj 3bitsCin=0

4biis,

2x2
multiplier

or
4x2

constant
multiplier

LUT

16 lines

16 line

4-bit result prOJ
or

6-bit result f5:01

4 bits or 6 bits
4 bits or 6 bits

4 bits or 6 bits
4 bits or 6 bits

4 bits or 6 bits

4 bits or 6 bits
4 bits or 6 bits

4 bits or 6 bits

(b)

Figure 4.1 Multi-output LUTs : (a) A 2-bit adder : (b) A 2x2 or a 4x2
constant coefficient multiplier

If a multi-bit output LUT is large enough for a computation, no interconnection (for exam

ple, to propagate a carry for an adder) may be required since all possible outputs can be stored

into the large memory. In addition, unlike a single output LUT, a multi-bit LUT requires only

one decoder or a multiplexer with multiple inputs. Thus, the area for decoders reduces. How

ever, the overall memory requirement to realize a function increases. The required memory

size increases exponentially with the number of inputs. Therefore, multi-bit LUTs may not

be area-efficient in all situations. Also, in this case, the computing time may not reduce much

due to the complex memory block and the increased capacitance on long bit lines for reading.

Instead of using one large LUT, we show implementations of an 8-bit adder with a number

of smaller multi-bit output LUTs in Figure 4.1. Figure 4.2(a) depicts an 8-bit adder consisting

of two 9-input LUTs. Each 9-LUT has two 4-bit inputs, one 1-bit carry in, and a 5-bit output

for a 4-bit addition. Thus, total memory requirement is 2 x 29 x 5 = 5120 bits. The carry is

propagated to the next 9-LUT after the previous 4-bit addition in one LUT is completed (i.e.

www.manaraa.com

31

a ripple carry). Since each LUT must be read sequentially, this adder takes a longer time to

finish an addition. By employing the concept of carry select adder as depicted in Figure 4.2(b),

a faster adder using 8-LUTs can be realized as the reading of the LUTs does not depend on

the previous carry. In this case, the actual result of each 4-bit addition is selected using a

carry propagation scheme. However, all the LUTs are read in parallel. The total time for the

modified adder is the sum of the read time for one 8-LUT and the propagation time for two

multiplexers. Thus, it is faster. This adder also requires the same amount of memory (i.e.

4 x 28 x 5 = 5120 bits).

LUT
(2A9 * 5) Sbits

LUT
(2A9 * 5)

4bit adder Carry 4bic adder

1 1 1 1
Carry 0ut SUMMbits)

(a)
SUMMbits)

Sbits

Carry fn

LUT LUT LUT LUT
(2A8 * 5) (2A8 * 5) Sbits (2*8 * 5) (2A8 * 5)

4bit adder 4bit adder * 4bit adder 4bit adder
Cin=0 Cin=l Cin=0 Cin=l

^ C'
MUX

Carry Out UT

L~> f—'

Sbits

Carry
MUX Carry

SUM(4bits) SUM(4bits)

(b)

LUT LUT LUT LUT LUT LUT LUT LUT
(2a4 * 3) (2A4 « 3) 4bits (2A4* 3) (2A4 * 3) 4bits

(2A4 « 3) (2A4 * 3) 4bits (2A4 - 3) (2A4 * 3)

2bit adder 2bit adder 2bit adder 2bit adder 2bit adder 2bit adder 2bit adder 2bit adder
Cin=0 Cin=l Cin=0 Cin=l Cin=0 Cin=l Cin=0 Cin=I

r~1 L—i ' L~i r~' L-1 r~'

SUM(2bits) SUM(2bits) SUM(2bits) SUM(2bits)

(c)

Figure 4.2 8bit adder using (a) two 9-LUTs ; (b) two 8-LUTs; (c) four
4-LUTs

www.manaraa.com

32

To make an area efficient adder, a 4-LUT with 6-bit outputs can be employed (Fig

ure 4.2(c)). The same carry propagation scheme as in Figure 4.2(b) is applied to the 4-LUTs

to implement an 8-bit adder, but four 4-LUTs are used. The total time of the adder using

the 4-LUTs might be higher than that using the 8-LUTs because it has twice the number

of multiplexers to be propagated. However, the read time for a 4-LUT is faster than for an

8-LUT since it has a smaller decoder and shorter data lines for memory reading. We, therefore,

recommend the design in Figure 4.2(c).

4.2 Constant coefficient multipliers using multi-bit output LUTs

An 8x8 multiplier is presented using single-bit output LUTs in [54]. As mentioned above,

the implementation in single-bit output LUTs may require larger area for each dedicated

decoder to LUTs and the interconnects between LUTs than multi-bit LUTs. Using the multi-

bit output LUTs shown in the previous section, an area/time efficient constant coefficient

multiplier can be implemented. Many memory cells reside on a cache memory. All of these

memory cells can be converted to multi-output LUTs with an appropriate decoding scheme.

Multi-bit output LUTs (4x8, 4x16, 4x32, 4x64, etc.) can reduce a significant amount of area

by removing the interconnects between single-bit output LUTs and the decoders. Figure 4.3

shows a hierarchical structure of 16x16 constant coefficient multiplier using multi-bit output

LUTs. The hierarchical constant coefficient multipliers using multi-bit output LUTs may

be less flexible than single-output LUTs with respect to the programmability in functions.

However, the area and time for larger constant coefficient multipliers using multi-bit LUTs is

linearly scaled with the number of bits. The reason for the linear scale is the variable width

of multi-bit LUTs, which implements a large constant coefficient multiplier in one LUT. For

example, 4x8, 4x16, 4x32, and 4x64 multipliers are implemented in 4-input LUT with the

corresponding width of output. Therefore, the multi-bit LUTs fits well to the conventional

cache structure with minimal area and time overhead.

www.manaraa.com

33

16 bits

8 bit 8 bit

6 bits 24 bits
8 bits

-jf 32 bits

24-bit adder

8x16
Const

Multiplier

8x16
Const

Multiplier

(a)
16 bits.

8 bits bits

20 bits 20 bits 20 bits 20 bits

4 bit 4 bit 4 bit 4 bit

20-bit adder 20-bit adder

4x16
Const.

Multiplier

4x16
Const.

Multiplier

4x16
Const.

Multiplier

4x16
Const.

Multiplier

24 bits

24-bit adder

T
(b)

Figure 4.3 A 16x16 multiplier : (a) top level of 16x16 multiplier ; (b)
hierarchical structure

4.3 Organization and operation of a reconfigurable cache module

Since we target compute-intensive applications with a regular structure, such as DSP and

image applications (FIR, DCT/IDCT, Cjpeg, Mpeg, etc.) as mentioned in Section 1, we first

partition them at coarse-level into repeated basic computations. A function in each level

can be implemented using the multi-bit output LUTs as described in Section 4.1. We only

add pipeline registers to each coarse-level stage, which contains a number of LUTs, to make

the entire function unit efficient. All these registers are enabled by the same global clock.

www.manaraa.com

34

Therefore, a number of coarse-level computations can be performed in a pipelined fashion.

Figure 4.4 shows a coarse template for a module. The cache can be viewed as a two-

dimensional matrix of LUTs. Each LUT has 16 rows to support 4-LUT function and as many

multi-bits in each row as required to implement a particular function. In the function unit

mode - in which the RFC works as a special function unit, the output of each row of LUTs is

manipulated to become inputs for the next row of LUTs in a pipelined fashion. In the cache

memory mode - in which the RFC works as a conventional cache memory, the least significant

4 bits of the address lines are connected to the row decoders dedicated to each LUT. The rest

of the address lines are connected to a decoder for the entire cache in the figure. In the cache

memory mode, the LUTs take the 4-bit address as their inputs selected by the enable signal

for the memory mode. Therefore, regardless of the value of the upper bits in the address,

the dedicated row decoder selects a word line in each row of LUTs. This means one word is

selected in each LUT row according to the least significant 4 bits.

Each LUT thus produces as many bits as the width of the LUT. These are local outputs of

the LUTs. These outputs are available on the local bit lines of each LUT row. For a normal

cache operation, one of the local outputs needs to become the global output of the cache. This

selection is made based on the decoding of the remaining (n — 4) address bits decoded by the

higher-bit decoder. The local outputs of the selected row of LUTs are connected to the global

bit lines. The cache output is carried on the global bit lines as shown in Figure 4.4. Thus,

output of any row of LUTs can be read/written as a memory block through global lines. We

propose that these global lines be implemented using an additional metal layer. The global bit

lines are the same as the bit lines in a normal cache.

Both decodings can be done in parallel. After a row is selected by both the decoders, one

word is selected through a column decoder at the end of the global bit line as in a normal

cache operation. In the figure, the tag part of a cache is not shown and a direct-mapped

cache is assumed for the module. However, the concept of reconfigurable cache can be easily

extended to any set-associativity cache because the tag logic is independent of the function

unit's operations.

www.manaraa.com

g: (same to all the LUTs)
S f\ , 4bits (LSB)
t/l

5s

cr
£? V

4)bits (MSIt)

(n-4)bits

/
Enable signal
for memory m

8

I

%
S

I
1

Dde

4bii

Interconnection

Wtfllfg

4b its

mem

4bii

itiVSip—i

4b its

iry hlnr

£

4bi

fhVTl

fcr
4b its

Interconnect! >n

4bi

w$

fc
4b its

Interconnect!

-t

m

:£

4bi

4b its

4bi

fcr
4b ils

/

local bit line

1/

global bit line

Jt

Figure 4.4 Cache architecture in the reconfigurable module

www.manaraa.com

36

4.4 Access time for cache operations

We compare the access times for the reconfigurable functional cache (RFC) with the access

time for a fixed cache module of comparable size. The base fixed cache module from which

a reconfigurable cache is derived comes in two flavors. The first is a memory cell-only array

cache with one address decoder and one data array. The second is a parallel decoding cache

with segmented-bit lines and partitioned-word lines. The segmented-bit lines are divided every

16 cache blocks and enabled by the decoder for the high-order address bits with switches like

the global bit lines in Figure 4.4. The partitioned-word lines are divided into the decoding

lines from the the high-order address decoder and local word lines in a sub-memory blocks

from each dedicated decoder in Figure 4.4. The local word lines select one block in every 16

cache blocks and one of them is selected by the high-order address decoder. The base array

cache is shown in Figure 4.5.

The memory-cell only array cache has single-level decoding leading to low area and slow

access time. An RFC based on this design reduces access time by introducing hierarchical

decoding at a cost of large area overhead. A base array cache structure, however, already

incorporates access time advantage of hierarchical decoding, and hence also needs more area.

An RFC based on this design, hence, shows a slight degradation in access time with a very

small area overhead. We analyze the RFC access time for cache operations in terms of address

decoding time and word/bit line propagation time. Other components of access time, such

as sense amplifier and column decoding, do not differ over the two cache organizations. The

access times for an RFC based on a memory cell array cache and the base array cache are

estimated below, respectively.

Memory cell array cache. The cache with the reconfigurable structure may have

a faster address decoder than a memory cell array cache, which contains one main address

decoder and a bunch of adjacent memory cells. Since each LUT, with its own row decoder for

addressing in the reconfigurable module, is much smaller than a large synthesized memory cell

array in a conventional cache, the decoding time of a LUT is faster than the decoding time of

www.manaraa.com

37

a large cache. As mentioned earlier, since two decoders can decode in parallel, possible word

lines in a cache according to the least significant 4 bits may be ready to be read or written

before the main row decoder even finishes decoding an address. The assumption here is that

the main decoder has a larger number of address bits. Since the two decoding operations are

independent, the delay of decoders is the maximum of two decoding times in the reconfigurable

module. If there are many LUTs which take the same lower 4 bits in the module, we have to

consider the increased capacitance due to the fan-out of the lower address bits. If the delay of

decoding is higher, we may need a larger driver for the least significant 4 bits to reduce the

delay. However, the drivers will not affect the size of the reconfigurable module much as we

can put a driver into the space saved by reducing the size of the high-order address decoder.

Each bit line in a normal cache is replaced by the global line in the proposed architecture.

Since the global line does not drive any gates (only the drain connections of the switches placed

in an interleaved fashion - every sixteen cache blocks), the reconfigurable module does not have

a higher delay due to the global lines. Although the global bit line in RFC is stretched by

inserting the interconnection between LUT rows, the number of drains - dominant capacitance

in the bit line - is reduced by a factor of 16. Thus, the segmented global bit line in the

RFC has less capacitance than the bit line of a conventional cache. Additionally, the local

bit line discharge can be done in parallel with the higher address bit decoding and word line

propagation. This indicates that a data signal from a memory cell through the bit line in the

module is propagated faster than a normal cache.

The word line in the reconfigurable cache is longer than in a memory cell array cache due

to additional row decoders for each LUT. Therefore, the propagation delay of a signal from

the higher-bit decoder through the word line in the module is slightly higher than in a normal

cache. However, the sum of two propagation times, word and bit lines, is smaller than in a

conventional cache since the local bit line in RC starts discharging before the word line finishes

the propagation.

As mentioned earlier, other delays are similar in both the memory cell array cache and the

RFC. In summary, the cache access time of RFC is faster in decoding time and bit/word line

www.manaraa.com

38

propagation time. Therefore, the RFC is faster than a conventional memory cell array cache

in read and write cache operations.

To estimate the access time, we used a cache simulator, CACTI with 0.8fim technology [50].

They partitioned the access time into five parts, Decoder, Word Une, Bit line, Sense Amplifier,

and Data out driver (for column decoder) for tag and data parts. We modified the simulator

slightly to suit our structure, such as the parallel decoding and longer lines in the data array.

We computed the access time of data part for 8KB cache with 128 bits block size, which is

used to implement our example functions in Section 6. Table 4.1 shows the access time of

a normal cache and the reconfigurable module. Due to the reason described above, it turns

out that the overall decoding time has decreased and the delays of word and bit lines have

increased. Note that CACTI simulator implemented in software cannot take account into the

overlapped propagation time between the local and global word lines as described above. If

the* overlapped time is included, the sum of propagation times for word and bit lines would

be smaller than the time shown in the table. However, since we reduce the decoding time

significantly, the total cache access time, sum of the five factors, in the reconfigurable module

is less than in a normal cache.

Table 4.1 Comparison of access time for an 8KB cache with 128bit-wide
block

Normal
Cache (ns)

RFC
Module (ns)

Comments

Decoder 2.88 Max(2.38, 2.28) = 2.38 decreased
Word line 1.14 1.24 increased
Bit fine 0.46 0.55 increased
Sense Amplifier 0.58 0.58 same
Data out driver 0.60 0.60 same
Total time 5.66 5.35 decreased

Base array cache. Recall that the base array cache performs parallel decoding with

segmented-bit and partitioned-word lines. Cache implementations may have a similar or more

efficient parallel decoding structure with segmented bit lines and partitioned word lines (vertical

partition in HP PA-RISC [55] and horizontal partition in Divided Word Line cache architec

www.manaraa.com

39

ture [56]). Unlike the RFC cache organization with vertical and horizontal partitions, some

partitioned caches might employ only the vertical partition of cache blocks for less capaci

tance on the segmented bit lines because the stretched word line causes more delay than a

synthesized sub-block. However, if we consider the word line propagation time with the dis

charging time of local bit lines, the horizontal partition with the dedicated decoders to each

LUT (sub-memory module) can make the word line propagation faster. As described earlier,

discharging the local bit line can start with charging the word line in RFC. If we partition

a cache block only vertically for segmented bit lines, one bit line of each bit line pair in a

cache block cannot be discharged unless the entire word line is fully charged (decoded) from

the higher address-bit decoder. Although the entire stretched word line propagation in RFC is

slightly slower due to insertion of the dedicated LUT decoders, the parallel discharge/charge

of the local bit line/word line compensates the stretched word line (or makes it even faster).

Therefore, we compare the access time for RFC to the base array cache partitioned vertically

and horizontally with the segmented bit lines and partitioned word Unes.

a 4bits (LSB)

(n-4)bits (MSB)
Vz ! H

(n-4)bits f

memory block

4bits

is

- £ . £

local bit line

segmented-bic line

1% ̂

-2J

local word line

partitioned-word line

Figure 4.5 Parallel decode cache architecture (Base array cache) for faster
cache access time

www.manaraa.com

40

The access time of reconfigurable cache is slightly slower than that of a plain cache due to

the stretched bit lines caused by the interconnections between LUT rows in the RFC. Based

on the SPICE model parameters for 0.5yrni technology in [57] the capacitance of the stretched

bit line in the RFC is increased by 11% over the segmented bit line in the caches. Since the bit

line access time constitutes 8% of the overall cache access time (estimated in [50]), the access

time overhead due to the stretched line is about 1% of the overall cache access time. Since the

word line propagation time, the decoding time, and other components in the RFC are similar

to those in the base array cache, the overall cache access time in the RFC is slower than the

base array cache by about 1%. The area overheads for FIR and DCT/IDCT function modules

are given in Section 6.2 with respect to both cache models (memory cell array cache and base

array cache). Using those faster decoding caches to implement reconfigurable modules, we can

easily convert memory sub-blocks into LUTs without adding significant dedicated logic, such

as decoders and address lines. Therefore, we build the reconfigurable caches into the caches

based on the parallel decoding architecture.

4.5 Configuration and scheduling

In Section 4.5.1, we explain how to store and place the configuration data in a cache

memory based on a conventional cache architecture. Then, in Section 4.5.2, we describe a way

to load the configuration data initially and to load partial configuration data at run-time. The

scheduling and controlling data flow for RFC is described in Section 4.5.3. The conditions for

the efficient number and size of LUTs to build an RFC is described in Section 4.5.4.

4.5.1 Configuration of a computing unit

To reduce the complexity of column decoding in normal cache memory, data words are

stored in an interleaved fashion within a block. The distance between two consecutive bits of

a word is equal to the number of words in a block. However for LUT application, we need to

use multiple bits for a single LUT. Due to the interleaved placement of data words in a cache

block, we cannot write one entry of a multi-bit output LUT by writing one word in a cache.

www.manaraa.com

41

This implies that we can only write one bit into a LUT if the width of LUT is the same as the

number of words in a cache block or we can write two bits simultaneously into a LUT if the

width of LUT is half the number of words in a cache block. For example, if a 4-LUT produces

an n bit-wide output for a function and the number of words in a cache block is n, 16 xn words

- 16 for the number of entries and n for the width of LUT output (one bit from each word) -

are required to be written to the LUT in the cache. However, since other LUTs placed in the

same cache blocks (LUT row) can also be programmed simultaneously, no more than 16xn

words are required to fill up the contents of all LUTs in the entire LUT row. In addition, if

the width of a LUT is larger than the number of words in a cache block, multi-bit writing is

performed into each LUT in a LUT row (as mentioned above). This restricts the width of the

multi-bit output LUT to be an integral multiple of the number of words in a cache block. This

allows for an efficient reconfiguration of all LUTs in a row. The number of LUTs in a column

- placed vertically - for a pipeline stage may also be required to be a power of 2. Since all

cache structures are based on a power of 2, it is more convenient to make all LUT parameters

(length and width) a power of 2 to avoid a complicated controller and an arbitrary address

generator. This may result in under-utilization of memory. However, the idle memory blocks

for LUTs are not likely to be a problem when the module is used as a function unit due to

availability of sufficient memory size in a cache.

4.5.2 Initial/partial reconfiguration

Initial configuration converts a cache into a specific function unit by writing all the entries

of LUTs in the cache. The configuration data to program a cache into a function unit may be

either available in an on-chip cache or an off-chip memory. Loading time for the configuration

data in the latter case will be larger than in the former case. The configuration data may

be prefetched by the host processor to reduce the loading time from off-chip memory. Using

normal cache operations, multiple writes of configuration data to the LUTs are easily achieved.

An RFC operating as a function unit can also be partially reconfigured at run-time using

write operations to the cache. When a partial reconfiguration occurs, the function unit must

www.manaraa.com

42

wait for the reconfiguration to complete before feeding the inputs. Since computation data

(input and output) and reconfiguration data (contents of LUTs) for a function unit share the

global lines for data buses, we cannot perform both computing and partial reconfiguration at

the same time. It is possible to perform both computations and reconfigurations simultaneously

if we have separate data lines for computation data and configuration data. To process a large

number of data elements, we do not need to reconfigure often. For example, in a Convolution

application with 256 taps, we need to reconfigure a module implementing 8 taps 32 times.

The time to configure initially from the normal cache memory mode to a function unit mode

or to reconfigure a part of a function unit depends on the number of cycles to write words into a

cache. Initial configuration time dominates the total configuration/reconfiguration time. The

partial reconfiguration at run-time usually loads a small part of configuration. The targeted

SIMD applications require small initial and partial configurations and hence configuration has

a small affect on overall execution time. The configuration time in our simulation (including

initial and partial) for FIR and DCT with various function parameters are shown in Section 7.3.

With a smaller number of data elements, the configuration time dominates the total execution

time. However, the total execution time is not dominated by the configuration time when the

number of input data elements exceeds a threshold (which is true for SIMD applications).

4.5.3 Scheduling and controlling data flow

A cache module can also be used to implement a function with a larger number of stages

than what can be realized by the reconfigurable functional cache in one pass. In this case, we

divide the function into multiple steps. That is, S stages required for a function can be split

into sets, Si, S%,..., Sjt, such that each set Si can be realized by a cache module. If all S/s are

similar, then we can adapt data caching as described in [58] to store the partial results of the

previous stage as input for the processing by the next configuration. The 'similar' here means

that the LUT contents may change, but the interconnection between stages is the same. This

happens, for example, in Convolution applications. By changing the contents of LUTs, we can

convert a stage in the cache block to carry out the operation of a different set of pipeline stages.

www.manaraa.com

43

In general, MuItipIy-and-AccumuIation (MAC) is a very common function in many DSP and

image processing problems. The MAC for FIR and DCT/IDCT is implemented in this thesis

in two ways using multiplier-adder and distributed arithmetic unit as shown in Section 6. The

applications computing with MAC will have the same interconnection for all the computing

stages with different LUT contents.

In data caching scheme, we place all input data in a cache and process it for the first set of

stages, Si- Following this, the cache module is configured for stages, So- We have to store the

intermediate results from the current set of stages into another cache and then reload them

for the next set of computations. To provide data without any stall, two other cache modules

may be used to store input and intermediate data, respectively. These modules are address-

mapped to provide efficient data caching for intermediate results. The role of the two caches

can be swapped during the next step when a computation requires the intermediate results as

inputs and generates another set of intermediate results. If both an input and an intermediate

result are required by all the computations, the two caches cannot be swapped. The two

caches must be large enough to hold input and intermediate results, respectively. Moreover,

the reconfigurable functional cache must be able to accept an input and an intermediate result

as its inputs.

4.5.4 Number and size of LUTs in RFC

The following conditions are used to determine the efficient number and size of LUTs with

the parameters described in Table 4.2. The size and number of LUTs must be a power of 2 for

a convenient control of partitioned memory blocks. By determining the most efficient number

of LUTs in a row, the area overhead for the dedicated decoders to the LUTs could be reduced.

• Conditioixl:

total # of bits/line > (# of LUTs) x (# of bits required per decoded entry in a LUT)

=> Nb/W x Nw/B > x x a

www.manaraa.com

44

• Conditions:

LUTs required for a function in a row < th^L^tho/TuT

x n„, xNa /B o rm<n^
— mxiV, ti f / B

These conditions imply that we can write m < NbJ.w configuration bits into each LUT in a

row by writing one word into the cache. Also, the actual number of LUTs implemented in a

row is equal to

Table 4.2 Parameters to determine the number and size of LUTs

a Number of bits required in a row of LUT
X Number of LUTs required in a LUT row
m Number of bits to be written into a LUT by one word (power of 2)

^b/w Number of bits per word
Nw/ B Number of words per cache line

www.manaraa.com

45

CHAPTER 5. ABC MICROPROCESSOR

5.1 Overview of microprocessor

In a reconfigurable cache module architecture (RCMA), we assume that the data cache is

physically partitioned into n cache modules. Some of these cache modules are dedicated caches.

The rest are reconfigurable modules. A processor is likely to have 256KB to 1MB Level-1 data

cache within the next 5-10 years. Each cache module in our design is 8KB giving us 32 - 128

cache modules. A reconfigurable cache module can behave as a regular cache module or as a

special purpose function unit.

HOST

D-Cache
(Fixed)

Cn/

FP Mult,
(reconfig)

RCm/

DCT/IDCT
(reconfig)

RC2/

Encryption
(reconfig)

RC3/

FIR Filter
(reconfig)

RCl/

Figure 5.1 Overview of a processor with multiple reconfigurable cache
modules

Figure 5.1 shows the overview of the processor with reconfigurable functional caches (RFCs).

In an extreme case, these n cache modules can provide an n-way set associative cache, m

modules out of n cache modules are reconfigurable. Whenever one of these cache modules

is converted into a computing unit, the associativity of the cache drops or vice versa. Alter

natively, the address space can be partitioned dynamically between the active cache modules

www.manaraa.com

46

with the use of address bound registers to specify the cached address range. RFC 1, RFC2,

RFC3,..., RFCm in Figure 5.1 can be converted to function units, for example, to carry out

functions such as FIR filter, DCT/IDCT (MPEG encoding/decoding function), encryption,

and general computation unit like a floating point multiplier, respectively. When some subset

of the m RFCs are used as function units, the other caches continue to operate as memory

cache units as usual. It is also possible to configure some cache modules to become data input

and output buffers for a function unit. The RFCs are configured by the processor in response

to special instructions.

In this thesis, we propose that each cache module be designed to be reconfigurable into

one of several specific function units. Since each reconfigurable module can be converted into

a small set of functions with similar communication needs, interconnections for each RFC are

fixed to be a super set of the communication needs of the supported functions. The advantages

of fixed interconnection are as follows. The fixed interconnection is less complex, takes less

area, and allows faster communication than a programmable interconnection. Moreover, our

experience demonstrates the feasibility of merging several functions into one RFC with fixed

interconnections. More discussion with respect to the fixed set of applications supported is

presented in Section 7.4.

5.2 Microarchitecture with RFCs

We integrate the reconfigurable functional cache (RFC) described in Section 4 into a super

scalar processor architecture to build the adaptive balanced computing (ABC) microprocessor

with the use of RFC as a conventional data cache storage or a specialized computing unit on

demand. First, we show a partitioned cache memory to provide a larger number of memory

modules in Section 5.2.1. Second, the cache organization with RFCs is described in 5.2.2.

Third, we describe a new instruction set to utilize the RFCs in Section 5.2.3. Finally, we show

the proposed microarchitecture to exploit the RFCs and compiling requirements with the new

instructions in Section 5.2.4 and 5.2.5, respectively.

www.manaraa.com

47

5.2.1 Partitioned cache design

When one of the cache memory modules implemented as an RFC is reconfigured as a

computing unit, the capacity of cache memory reduces by the fraction of t he module to be

configured. To reduce the effect of the reduction in memory storage capacitry, we partitioned

a cache memory into a number of smaller-sized memory modules. Then, eacEh. smaller module

could be used to implement an RFC.

To partition a large cache memory, we apply a similar address decoding organization (de

sign) in each cache module for an RFC as shown in Chapter 4. The decoder- for each module

is divided further to make a hierarchical decoding in higher address bits. TThis gives sixteen

smaller-sized cache modules which can be built as an RFC. When one of the modules is con

figured as a computing unit, it should be excluded from the cache operations- This is done by

disabling the dedicated decoder to the specific data array through ANDing the decoding line

from the 2-to-4 decoder and an RFC flag for computing mode. More details: are given in the

following sections.

wayO way I way2 way3

enable

•o

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

Data
Array

CN

•O

Data
Array

Data
Array

Data
Array

Data
Array

Figure 5.2 Partitioned cache for multiple modules

www.manaraa.com

48

5.2.2 Cache organization with reconfigurable functional caches

We employ a multiple-way set associative data cache memory in a RISC superscalar micro

processor to support the RFCs. Modules in a set associative cache can be built as RFCs. Each

RFC can be configured to a specialized computing function or used as a normal cache memory

module. If the size of a cache module for one-way in a multiple-way set associativity is large

enough to be mapped to more than one RFC, we partition them into multiple smaller-sized

cache modules as described in Section 5.2.1.

Two possible cache organizations with the address mapping including RFCs are shown in

Figure 5.3. To prevent the memory address space from becoming non-cacheable (they cannot

be stored in L-l data cache due to removal of the blocks from the cache operations), not all of

the cache modules are configured as computing units at the same time in Figure 5.3(a). RFCs

can be implemented with a minimal cache modification in this organization. In addition,

one module can be easily excluded from the cache operation because the cache partition is

already provided in a multiple-way set associative cache memory. The cache memory capacity

is reduced when an RFC converts it into a computing unit. This results in a full dynamic

associativity of cache memory when configuring. For example, if one out of four cache modules

is configured to a computing unit, only 8-way blocks in all sets are left to map the address space

in lower-level memory. This may cause more cache misses, which results in degradation of the

performance. However, this can be compensated adequately by accelerating the computations.

A further partition of cache memory within a module (way) is shown in Figure 5.3(b). The

structure of further cache partition is described in Section 5.2.1. The size of each module is

based on the minimal size of RFC - 8KB as shown in Chapter 4. In this organization, when

an RFC converts into a computing unit, the sets containing the RFC are less-cacheable (low

associativity compared to other sets) while the other sets retain the same caching capacity. This

scheme retains more storage than the full dynamic associativity organization of Figure 5.3(a)

(each way corresponding to RFC) by converting a smaller portion of cache memory. This could

reduce the impact of the RFC reconfiguration when the RFC works as a computing unit with

the partial dynamic associativity.

www.manaraa.com

49

4-way set associative cache address
mapping

wayO way I way2 way3

RFC_0 RFC_2 RFC_I RFC_3

(a)

Size of
one module

Size of
one module

Size of
one module

4-way set associative cache

wayO way 1 way2 way3

address
mapping

RFC_0

RFC_1

RFC_2

RFC_3

(b)

Size of
one module

Size of
one module

Size of
one module

Size of
one module

Size of
one module

I Size of
I one module

Figure 5.3 Cache organizations and address mapping with RFCs (a) 4 (b)
16 cache modules

www.manaraa.com

50

5.2.3 Instructions to utilize RFC

It takes three steps to perform a computation in RFC. First, the RFC is configured as

a specialized computing unit by loading the pre-defined configuration data into the specific

cache memory (RFC). Second, the input data to be processed is loaded to the RFC. Third,

the output data from the RFC is stored back into the memory. All these steps require only

load/store class of instructions. To configure an RFC and then execute computations in the

R F C i n a c o n v e n t i o n a l m i c r o a r c h i t e c t u r e (R I S C p r o c e s s o r) , n e w i n s t r u c t i o n s - n a m e d r f c

class of instructions - are added with a new opcode. The format of rfc instructions is the

same as the conventional load/store instructions except for the target register field. The

rfc load/store instructions need not have the target register field in the microcode as is the

case for conventional load/store instructions. This format provides an address for access to

memory hierarchy.

Three types of instructions, rfcJoad^conf, rfcJoadSn, rfcstore-out, and initialize /

terminate instructions are added. The detailed format of the new class is described in Fig

ure 5.4, where we show only word-data type load/store instructions (lw/sw). The instruction

description is mostly self-explanatory. Individual instruction operations are explained briefly

later in Section 5.2.4. Note that the function identifier (FID) field chooses the module that

will be configured for a specific function. In this thesis, we use word-data type rfc instruc

tions for the description purpose. For different types of data (for example, half-word or byte,

etc.), the same instruction format in the figure can be used. Also, note that rfcJLw-conf-end

and rfcjpartialset also perform a loading operation in addition to setting the mode. The

rfcJw-conf start instruction is used for a special setting in a RFC, such as use of multiple

input buffers (i.e. input and intermediate data). We assume that there are only four functions,

but the concept can be easily extended. The special flags can be used for a two-level function

identification of RFCs if more than four RFCs are implemented. For example, the flag with

rfcJw-conf start sets a function class followed by sub-FED.

www.manaraa.com

51

31 26 25 21 20 19 18 16 15 0

New opcode Rs FID CMD Offest

FID (function identifier) : 4 different functions to be implemented into RFCs

00 - Function 0

01 - Function 1

10 - Function 2

11 - Function 3

CMD (command) : type of operations

000 - start configuration and set the special state register and other required flags

001 - load configuration data (from reserved address space)

010 - end of loading configuration data and set to execution mode

011 - terminate an RFC use for computation and return back to the cache mode

100 - set flags and load input data to be processed for the computation

101 - load 2nd set of input data from memory hierarchy if applicable

110 - store output data to memory hierarchy

111 - set for partial reconfiguration process at the end of current step

RFC instructions for load-word based on the CMD

000 rfcJw-conf-start F^class special-flags
001 rfcJw-conf fid offset($r)
010 rfc-lw_conf-end fid oflset($r)
011 rfc_terminate fid
100 rfc-lw-inl fid offset ($r)
101 rfcJw_in2 fid offset ($r)
110 rfc_sw-Out fid offset($r)
111 rfc_partial_set fid offset($r)

Figure 5.4 rfc instructions for loading and storing "word" type of data

www.manaraa.com

52

5.2.4 Mechanism for the computation, in RFC

5.2.4.1 Overall microarchitecture

With out-of-order issue in a superscalar processor, any instruction which does not have a

dependency on preceding instructions can be issued and executed at any time if the required

resources are available. In addition, in a speculative execution, the next instruction stream

in a code sequence can be executed speculatively. The out-of-order issue and execution may

a l s o h a p p e n a m o n g r f c i n s t r u c t i o n s b e c a u s e t h e r e i s n o e x p l i c i t d e p e n d e n c y b e t w e e n r f c

instructions. However, the rfcJwJn(1 or 2) and rfcswjout instructions must not be issued

and executed until the RFC has been configured. From the microarchitecture viewpoint, a

speculative execution mechanism may issue the rfc instructions in any order. To avoid this

type of exception, we add a special RFC state register. In the register, two bits are reserved

for each RFC module. The two-bit RFC state information is organized as follows.

• 00 : NON-RFC/END-RFC - normal mode; the RFC is not performing a computation,

but functioning as a normal cache. rfcJw-conf jstart checks this to make sure that no

execution in a designated RFC is performed and rfcJterminate sets this to notify the

end of an execution

• 01 : CONF - configuration mode; rfcJw-jconf start sets this to notify the configuration

mode being performed and the following rfcJwsonf instructions load configuration

data with checking the configuration status

• 10 : CONF_DONE/START-RFC_EXE - end of configuration; rfcJuijconf -end sets this

to notify the configuration DONE and rfcJwJn checks this to make sure that no more

configuration is being performed

• 11 : RFCJEXE - execution mode; the first rfcJLw.in sets this to notify the execution

being performed and the following rfcJ.wJ.ri and rfcswJn instructions process the

input and output data

www.manaraa.com

53

The state transition is controlled by the r f c instructions as depicted in Figure 5.5. All

the rfc instructions must access the RFC state register according to the FED field in the

microcode and then check the current state with its CMD field. If it is an allowed state, the rf c

instructions can be issued. Otherwise, the rfc instructions are stalled until the corresponding

state is resolved.

5.2.4.2 Configuration

The configuration of RFC from a cache module simply implies loading all the contents of

LUTs required to construct a computing unit. A normal cache read with a small modification

directs specific data into the designated cache line. The required configuration data for RFCs

resides in a reserved memory (address) space in main memory. The configuration is loaded into

main memory when the system boots up. The rfcJw-conf start instruction sets the corre

sponding RFC state register. The subsequent rfcJw-conf instructions load the configuration

lines to the specific RFC without changing the RFC state.

Since the configuration data is held in main memory, the data accesses would be cache

misses if the same configuration had not been loaded previously. This cache miss will replace

the current clean/dirty lines in a write-back cache. Thus, we do not require any separate cache

flushing. A simple modification of cache replacement mechanism, such as LRU, is required to

replace the data in the specific cache module (RFC) with the loaded configuration data in a set-

associative cache organization. The modified LRU scheme, which is set by rfcJw-conf start,

Figure 5.5 State transition for the RFC status

rfc_tenninate

rfc_lw_conf_end

www.manaraa.com

54

replaces lines in the RFC only if rfcJw-conf accesses in CONF mode. The configuration

data in RFC should not be modified by other load/store instructions except the rfcdw-conf

instructions if the RFC state is not '00'. An additional operation in the modified LRU mecha

nism protects the configuration data by removing the lines in RFC from the replacement line

list in LRU when conventional load/store instructions access the cache. Thus, the proposed

LRU scheme consists of two operations, one for rfcJw-conf to replace data in the specific

RFC and the other for other load/store instructions (including rfcJw-inl/2) to access the

rest of cache memory.

A conventional load/store instruction may see a hit in the RFC block during the recon

figuration as old data, which have not been replaced yet, may still reside. This is acceptable

since all old data will eventually be replaced by configuration data. If a computation is being

performed in RFC {RFC-EXE mode), the read/write access to RFC must be blocked (using

the state bits). Using the proposed LRU modification, the set associativity of cache memory is

changed dynamically depending upon the use of RFC. During the configuration, one module

out of multiple modules in a set associative cache is frozen out of cache operations. A write

operation to RFC is prevented by disabling the write enable in the RFC during the execution

mode.

5.2.4.3 Execution stage

The new instructions are decoded in the dispatch stage according to their specification

described in Section 5.2.3. Since the format of new instructions is similar to that of conventional

load/store instructions, the complexity of the additional decoding logic is not significant. The

rfcJwJ.nl/2 instruction, which loads input data to an RFC computing unit, is decoupled

from LSQ (Load Store Queue) and queued into an input buffer (IBUP) dedicated to each

RFC. This allows the rfcJwJnl/2 instructions to be independent of the LSQ and dispatch

of more rfcswjout instructions. In addition, the decoupled EBUF provides data in-order to

the RFC computing unit. The r/c load/store instructions also process the input/output data

independently in separate buffers. Otherwise, these instructions pass/receive data to/from

www.manaraa.com

55

RFC serially in one buffer. The effective address for the rfcJwJnl/2 instruction is calculated

using the existing datapath and passed to the corresponding instruction in IBUF, not to

LSQ. The details of IBUF are described later. If no slot in IBUF is available, the following

instructions including conventional instructions fetched from memory are stalled until IBUF is

again available. Otherwise, a complex mechanism may be required for a decoupled fetch queue

between rfc load instructions and other instructions.

By queueing the rfcJLwJ.nl/2 instructions into IBUF in-order, the input data to be pro

cessed is provided to RFC in the correct order. This is like a reorder buffer mechanism for

input data of the RFC unit to remove the impact of out-of-order execution. The input data

from memory to the IBUF can be supplied out-of-order as in the conventional LSQ. Note that

instead of providing IBUF with the data in writeback stage, the data may be directly loaded

into the matched address slot in IBUF from data buses. Some applications may require two

separate inputs. For example, in an FIR filter with many taps, an input data stream may be

processed by a fixed number of taps and partial results are stored. In the second iteration,

input and partial results are loaded (using rfcJwJnl and rfcJwJn2, respectively) and pro

cessed together. That is why we provide two IBUFs. The computation in RFC is processed

when both data elements are available.

The mechanism to support out-of-order update (load) of input data in IBUF dedicated to

RFC is as follows. When the rfc instructions are issued and executed, the FID and CMD

fields (5 bits) are propagated with the address to be accessed together. Each IBUF attached

to RFCs keeps snooping these five signals and compares them with its own function identifier

(FID) and the corresponding command (loading rfc input data only). If the FID and CMD

match with one of the IBUFs and the cache access is a read, the loaded data is directly queued

into the matched address slot in IBUF with the current address accessed. This mechanism is

very similar to the conventional LSQ. Whenever the head slot in IBUF is updated (ready), it

is provided to the RFC for the computation. This ensures that data to RFC is delivered in

a correct order. The proposed mechanism is shown in Figure 5.6 (a) and (b). As shown, the

mechanism requires the FED and CMD lines to be added to the bus.

www.manaraa.com

56

After a computation is completed in the RFC, the output data is queued into an output

buffer (OBUF) as shown in Figure 5.6(b). The OBUF is a simple FIFO register file since the

queued data is already in-order. The presence of OBUF may reduce the stall time for the

rfcsw-out instruction ready in mm m it: stage due to the latency of computation in RFC. In

addition, it also reduces the stall time for the computation in RFC. For example, if OBUF is

not present, the ready output to be stored blocks the following processed input data and the

whole computing unit until the output is resolved by the rfcsw-out instruction in commit

stage, and vice-versa.

1 i l S s

(a)

IBUFl

comp.

{>

OBUF

CMD

FID Tag

Tag

Tag

data

data

data

RFC 3

RFC 1

RFC 2

RFCO

RFC

(b)

Figure 5.6 (a) Overview of I/O buffers organization: (b) I/O buffers to
dedicated to RFC

The rfcJterminate instruction sets the RFC state into the non-RFC mode after finishing

an entire computation. This setting should be done in the commit stage to avoid mis-execution

of pending rfc instructions. If the same computation within the current configuration may be

performed in the near future, the RFC state (RFC-EXE) is not changed.

The rfcJLw-inl/2 instructions do not affect any state when a mis-prediction/speculation

www.manaraa.com

57

or an exception occurs because the rfcJw-inl/2 instructions do not modify the precise state

in microarchitecture. If an exception or mis-speculation occurs, the only repair necessary is

to flush the instructions in IBUF as done in a conventional LSQ. In addition, all the com

puted data in RFC is resolved by the rfcsw-out instructions. This implies that wrong data

elements, which should not bs processed (such as mis-speculation), will not be stored because

the rfcsw-out instructions are committed in-order.

5.2.4.4 Partial reconfiguration, process

A whole function in an application may not be mapped to an RFC as a computing unit at

one time. For instance, in an FIR filter, if the number of taps for the filtering coefficients is

larger than the number of physical taps implemented in an RFC, we configure the first set of

taps in the RFC and then reconfigure it partially for the next set of coefficients at run-time.

In partial reconfiguration, not all of LUTs in the RFC need to be reconfigured since only the

coefficients are changed. This can be achieved using a cache write operation in rfcJw-conf.

To direct the partial configuration data to a specific RFC, we use the rfcJwjzanf instruction

described in Section 5.2.3 as we do for initial loading configuration. However, the RFC state

must be changed to CONF mode and the modified LRU mechanism is set from RFC -EXE

to CONF mode to replace the specific block in a set associativity as well. The rfc-partialset

instruction shown in Section 5.2.3 sets the RFC state register and all the required flags as

rfcJw-conf start does. This mechanism protects the current configuration to be retained data

in the RFC for the partial reconfiguration by setting the RFC state from RFC -EXE to CONF

mode directly. Note that we assume a correct program will not try to write in the same address

space where the configuration is stored. The following rfcJw-conf instructions reconfigure

the designated RFC as done for the initial configuration. Again, the partial configuration data

resides on main memory with a reserved address space which maps to the same area in the

cache.

www.manaraa.com

58

5.2.4.5 Forwarding mechanism between LSQ and I/OBUF

Store instructions may need to forward the data to subsequent load instructions for correct

operations. Otherwise, the old data is accessed. The forwarding mechanism, between load

instructions is not necessary because loads do not modify the data. Forwarding data between

store instructions is not required because the subsequent stores have the latest data. However,

for the faster execution by removing the read access to memory, a forwarding mechanism may

be used.

The r f c store instructions need to forward data to both conventional and r f c load instruc

tions if the addresses match. Since the rfc stores are queued and processed in LSQ, the same

forwarding mechanism between conventional load and store instructions is used for forwarding

data from the rfc stores to load instructions. The addresses are compared before the load

instructions are issued to access the memory. The only difference is that the data to be for

warded by rfc stores resides in OBUF. Thus, additional data buses are required between LSQ

and OBUF.

Similarly, the r f c load instructions queued into IBUF may receive data from the conven

tional store instructions in LSQ. Since only preceding stores forward data to the subsequent

loads and IBUF and LSQ are separated, the identification of the sequence order between store

and rfc load instructions is required. To identify the order, an instruction sequence number is

tagged to the instructions in both LSQ and IBUF. Using the tag number, the store instruction

compare its address with only the addresses of the subsequent rfc load instructions. It also

requires additional buses between LSQ and IBUF. The tag numbers can be used to identify

the instructions to be flushed in IBUF as well when a mis-prediction occurs.

5.2.4.6 Forwarding mechanism between IBUF and OBUF

In some RFC computations, i.e. HR, a calculated value in the RFC currently is reused for

the computation. Thus, a mechanism is required to forward data from OBUF to IBUF. The

addresses in LSQ for store instructions must be compared with the address of a load instruction

to see if there is a match and the data forwarding is required. If so, the rfc load instruction

www.manaraa.com

59

should be tagged in IBUF. When the rfc stores instructions store the data from OBUF to the

memory (or cache), the IBUF may also read the corresponding data from the bus directly by

checking the tags, which is similar to the mechanism for loading data from memory to IBUF

as described in Section 5.2.4.3. This ensures that the rfc load instructions do not receive old

data.

5.2.5 Compiling requirements for the specialized computations

The availability of RFCs allows programmers to use specialized computing units with simple

pre-defined and code-optimized function calls (e.g. FIRQ, DCTQ, etc.). The pre-defined

mapping configuration data and parameter information are included into the compiler libraries.

It simplifies programming and more function calls can be added to the compiler as and where

they are developed. Figure 5.7 shows a code sequence for a generic pre-defined function call

to use RFCs. Note that it uses unrolling of rfcJLw.inl/2 and rfcsw-out instructions 4 to 8

times to allow faster pipelining of data in the IBUF and storage of results. The number of

unrolled rfc instructions is determined by the size of IBUF.

www.manaraa.com

60

START:

CONFIG:

load_conf:

conf-end:

EXECUTE:

loadjstore:

END:

rfcJw_conf_start 0 0 # set the RFC status
as CONF
F_class 0
no additional IBUF

addiu $r5, $0 0 # loop index

sit $r4, Sr5 (no of iterations) # number of sets
bne Sr4, $0 load.conf
j conf_end

rfcJw-conf FED offset(Srl) # load configuration data
from memory to RFC

addiu Sri, Sri (cache line size) # address increment
(cache line size)

addiu Sr5, Sr5 1 # loop index increment
j CONFIG

rfc_lw_conf_end FID ofFset(Srl) # set the RFC status
as CONF done

addiu Sr5, SO 0 # loop index

sit Sr4, $r5 (no of iterations) # number of sets
bne Sr4, SO load-store
j END

rfcJwJn FID offset(Sr2) # load the input data
rfcJwJn FID offset(Sr2) # from memory
rfc_lw_in FID offset(Sr2)
rfcJwJn FID offset(Sr2)

rfc-sw-out FID offset(Sr3) # store the output data
rfc_sw_out FID offset(Sr3) # to memory
rfc-SW_out FID offset(Sr3)
rfc_sw_out FID offset(Sr3)

addiu Sr2, Sr2 32 # address increment
addiu Sr3, Sr3 32 # address increment

(one word)
addiu $r5, Sr5 1 # loop index increment
j EXECUTE

rfc_terminate # set the RFC status
as EXE done

Figure 5.7 A basic frame code using EIFC as specialized computing units

www.manaraa.com

61

CHAPTER 6. EXAMPLES OF RFC

We have experimented with two applications, Convolution and DCT/IDCT. In this chapter,

we describe how we map the applications into the reconfigurable functional cache (RFC).

First, we map each application into RFC separately, then we merge two applications into a

single RFC. We also compare the overall area of separated RFCs and a combined RFC in

Section 6.2. Next, we compare the execution time of these applications on RFCs with the

execution time on General-Purpose Processor (GPP) in Section 6.4. The main advantage of

the RFCs is on-chip processing, which implies faster processing time, no off-chip bottlenecks,

and the balance/utilization of on-chip caches between storage and computation.

6.1 Functions to be mapped to RFC

6.1.1 Convolution (FIR filter)

An RFC configured to perform a Convolution function is presented in this section. The

number of pipeline stages for the Convolution in an RFC depends upon the size of the cache

to be converted. Our simulation is based on an 8KB size cache with 128 bits per block/16-bit

wide words implementing 4-LUTs with 16-bit output. A conventional Convolution algorithm

(FIR) is shown in Equation 6.1.

M
y(n) = ̂ 2 w(k)x{n — k) (6.1)

k=o

One stage of Convolution consists of a multiplier and an adder. In our example, each stage

is implemented by an 8-bit constant coefficient multiplier and a 24-bit adder to accumulate up

to 256 taps in Figure 6.1(a). The input data is double pipelined in one stage for the appropriate

c o m p u t a t i o n [3 0] . A n 8 x 8 c o n s t a n t c o e f f i c i e n t m u l t i p l i e r c a n b e i m p l e m e n t e d u s i n g t w o 4 x 8

www.manaraa.com

62

constant coefficient multipliers and a 12-bit adder with, appropriate connections [54]. A 4 x 8

constant coefficient multiplier is implemented using 12 4-LUTs with single output from each

LUT on FPGAs. In our implementation, we split the 12-bit wide LUT contents of a 4 x 8

conventional constant coefficient multiplier into two 16-bit output 4-LUTs (part 1, 2) with

6-bit wide multiple outputs for a lower routing complexity of the interconnections as shown in

Figure 6.1 (b). The first six bits of each content are stored in LUT part 1 while the last six

bits are stored in LUT part 2 to realize a 4 x 8 constant multiplier.

(Bediate

Constant Coeff.
Multiplier (8*8)

Input

• "

24-bit Adder

> I

i '

Pipeline Reg. 1 Reg. |

(a)
4x8 constant multiplier 4x8 constant multiplier

5T3T

S
CO
*
oc

-a

3

8x2 bit

const,
mult.
part 1

,12^biLadder.

2bit
aader

2bit
adder

2bit
adder

2bit
adder

2bit
adder

2bit
adder

, 8x2 bits , 8x2 bits , 8x2 biq
h H • 1*

const. const. const.
mult. mult. mult.
part 2 part I part 2

8x2 bits

not
used

2bit
adder

2bit
adder

2bit
adder

2bic
adder

2bit
adder

2bit
adder

2bit
adder

2bit
adder

2bit
adder

8x2 bits
h H
not
used

2bit
adder

2bit
adder

2bit
adder

8x2 bits
H H

not
used

not
used

not
used

not
used

8x2 bits
H 4

not
used

not
used

not
used

not
used

(b)

Figure 6.1 (a) One stage of Convolution; (b) Array of LUTs for one stage
of Convolution

www.manaraa.com

63

The concept of a carry select adder is employed for an addition using the LUTs described

in Section 4.1. Therefore, we need a 6-bit wide result for a 2-bit addition, three bits when

carry-in=0 and three bits when carry-in=l from a LUT. An n-bit adder can be implemented

using such LUTs and the carry propagation scheme. The output is selected based on the

input carry.

One stage of Convolution can be implemented with 22 LUTs. To keep the number of LUT

rows a power of two for cache operation, we put 6 LUTs in each LUT row and have 4 LUT

rows to use 22 (out of 32) required LUTs. The final placement of LUTs is shown in Figure 6.1

(b). A few LUTs in the figure are not used for the computation. In Figure 6.1(b), pipeline

registers and interconnections for LUTs are not shown. For an 8KB RFC, we have 32 rows of

LUT which can be used to implement 8 taps of the Convolution algorithm.

6.1.2 DCT/IDCT (MPEG encoding/decoding)

In this section, we show a reconfigurable cache module performing the DCT/IDCT function,

which is the most effective transform technique for image and video processing [60, 61, 65, 68].

To be able to merge the Convolution and DCT/IDCT functions into the same cache, we have

implemented DCT/IDCT within the number of LUTs in the Convolution cache module.

Given an input block x{i,j), the N x N 2-dimensional DCT/IDCT in [68] is defined as

X{u,v) = jjC(u)C(v)]T x cos^ ^ 2NVn (6 '2)
1 t=0 j=o

<i, j) = I L E C(u)C(v)X(u, v) x (6.3)
iV u=0 u=0

where x(i,j) (i, j = 0, • • •, N—1) is a matrix of the pixel data, X(u,v) (u, v = 0, • • •, N — 1)

is a matrix of the transformed coefficients, and 0(0) = C(u) = C(v) = 1 if u, u # 0.

This N x N 2-D cosine transform can be partitioned into two N point 1-D transforms.

To complete a 2-D DCT, two 1-D DCT/IDCT processes are performed sequentially with an

intermediate storage. By exploiting a fast algorithm (the symmetry property) presented in

[59, 68], anArxiV matrix multiplication for the N x N 2-D cosine transform defined in (6.2)

www.manaraa.com

64

and (6.3) can be partitioned into two x T matrix multiplications of 1-D DCT/IDCT with

additions/subtractions before the DCT process and after the IDCT process.

The 8-point DCT with the symmetry property can be written in a matrix form as shown

below.

*0 A A A A XQ + X7

_ 1 B C -C -B XI +16

X4
~~ 2 A -A -A A X2 +r 5

*6 C B B -C X3 +z 4

D E F G XQ — XJ

1 E G -D -F XI — XE
_ 2 F -D -G E X2 -XS

G F E -D X3 - XI

(6.4)

(6.5)

' 1 6 '
„ 3tt
'16' ' 16 :

XQ A B A C XQ

XI _ 1 A C -A -B x2

Z2
~~ 2 A -C -A B XI

A -B A -C XQ

x7 A B A C XQ

x6 _ 1 A C -A -B x2

Xs ~ 2 1 0

1 to

x4 A -B A -C x6

1
+ 2

is written as follows.

D E F G

E -G -D -F

F -D -G E

G -F E -D

D E F G

E —G —D —F

F -D -G E

G -F E -D

According to the fast algorithm, the number of multiplications in (6.2) and (6.3) can be halved.

However, 4^ adders and y subtracters are needed before the DCT process and after the IDCT

process.

— cos^, where Xi

The 8-point IDCT

-

xt
x3

(6.6)
x3

(6.6)
X5

X7 J

Xz
(6.7)

Xz
(6.7)

X5

X7

www.manaraa.com

65

The 1-D DCT/IDCT process is a Multiply-and-Accumulate (MAC), which can be repre

sented as y = OiXi- Although a MAC is already built in the RFC in 6.1.1, the distributed

arithmetic [66, 68] is employed in the RFC instead for the DCT/IDCT function. This avoids

the run-time reconfiguration of coefficients required for the coefficient multiplier in FIR. Using

this scheme, once the coefficients are configured into the RFC, no more run-time reconfigura

tion is required.

The inner product of each 1-D transform (MAC) can be represented as follows.

N-1 yv-i wd-i
y = 53 aiXi = Y2 °t(-Z>io + 53 6»>2_r)

i=0 i=0 r= 1

Wd-1 rw-i
= £

r=l
^ * ûi&ii

. t=0

jV-1

2 r + 52 ak(~bio) (6-8)
i=0

where X{ — —i_1 bir2~r with two's complement form of an input word length Wd and at-

(z = 0, 1, 2,..., JV-1) are the weighted cosine factors. According to (6.8), the multiplication with

the coefficients can be performed with a ROM containing 2'v pre-calculated partial products

in a bit-serial fashion. The inner product computes the sums of partial products

corresponding to the same order bit from all the input elements processed in the current

stage using a set of serial shift registers. For the output of the inner product, one more shift

register is required. Therefore, one processing element (PE) contains a ROM and a shift

accumulator for the partial summations of corresponding data bit order. In this configuration,

each inner product is completed in the number of clock cycles that is the same as the word

length of input. With N PEs, TV-point DCT can be completed in parallel. Using the symmetry

property presented in (6.4), (6.5), (6.6), and (6.7), the contents of a ROM can be reduced by

2t. However, it requires two sets of y adders and y subtracters before the DCT process and

after the IDCT process.

Due to the coding efficiency and the implementation complexity, a block size of 8 x 8 pixels

is commonly used in image processing [60]. We, therefore, have implemented an 8 x 8 2-D

DCT/IDCT function unit by two sequential 1-D transform processes. In addition, the width

of input elements is eight bits. We also select the word length of the coefficients to be 16 bits

for the accuracy of the DCT computation.

www.manaraa.com

66

One PE with conventional architecture is depicted in Figure 6.2(a). One PE implemented in

the RFC is depicted in Figure 6.2(b). In the figure, the ROM is placed in the middle of a LUT

row to reduce the number of routing tracks. In the given cache size, 8KB, eight such PEs and

the additional adders/subtracters for pre/post-processing can be implemented. To make the

DCT/IDCT implementation compatible with the Convolution function unit, we place 4-LUTs

with 16-bit output in an 8KB sized cache. Only 20 LUT rows (16 for PEs and 4 for pre/post

processing) out of 32 LUT row in the 8KB cache are used for the implementation. However,

the LUTs not used in this function still remain in the RFC module for the compatibility

with the other functions. Since each PE requires a LUT as a 16x16 ROM and a 16-bit

adder, no significant consideration of the LUT placement is necessary in this design unlike the

implementation of Convolution.

Bit-Serial Input

—Shift RcgToj—

—| ShiftReg.il-

—#j Shift Reg. 21—

H Shift RegTi]—•

ROM
16x16

DIV by:

^cgistcr(16 bitsjj

16-bit Addcr/Subtractci

Bit-Serial Output j~~

(a)

S R I n l ht R_In2

Parallen In

J
Parallen Out

SR_outI

8x2 bits

not
used

Serial Out
8x2 bits 8x2 bits 8x2 bits

~SR_out2

not
used

not
used

16x16
ROM

Serial In
8x2 bits 8x2 bits

lT

not
used

not
used

, 8x2 bits , 8x2 bits,

not not
used used

16-bit adder/subtracter
if

2bit 2bit 2bit 2bit 2bit 2bit 2bit 2bit
adder adder adder adder adder adder adder adder

(b)

Figure 6.2 (a) DCT/IDCT processing element; (b) Array of LUTs for
DCT/IDCT processing element with the input registers

www.manaraa.com

67

A 16-bit carry select adder is configured as a shift accumulator with the registers not

shown in the figure for the self-accumulation in each PE. According to Equation (6.8), only

one subtraction is necessary. This is done by the same adder which can keep both addition

and subtraction configurations in 12-bit data width (6 bits for adder and 6 bits for subtracter).

The adder-subtracter shares the same input and output with the adder without requiring any

extra logic. However, an extra control signal is needed to enable the subtraction. The addi

tional adders and subtracters for the pre/post-processing are implemented using the scheme

for adder-subtracter described above since each pair of addition/subtraction needs the same

input elements. In addition, the 1-bit shift of accumulated data can be easily done by appro

priate connections from the registers to the input data lines of the adder. The input/output

shift registers are added only to the in/out port of the actual DCT/IDCT function unit after

the pre-processing unit and before the post-processing unit. This means only one set of shift

registers are necessary since all the PEs compute using 4 bits out of the same set of input data

in each transform of a row or a column as shown in (6.4)-(6.7).

In the actual implementation, we add one more set of shift registers to remove any delay

due to loading or storing in/out data from other memories. All the loading/writing back

from/to the storage can be overlapped with the computation cycle time in PEs by appropriate

multiplexing of the dual shift registers. Adding shift registers allows in/out data to be ready to

be processed and written immediately after the previous computation, without any idle time.

The controller described in Section 4.5.3 handles and controls the computation procedure. Once

the host processor passes the required information to the controller, all the control signals are

sent by the controller.

The computation process of an 8 x 8 2-D DCT is as follows. The function unit on the RFC

computes the 1-D transform for an entire row by broadcasting a set of input data after the

pre-addition/subtraction process to eight PEs in eight time units in a bit serial fashion (i.e.

a half set of data to four PEs and another half set of data to other four PEs). A set of bit

serial output from eight PEs is carried out to the output shift registers in the same fashion.

The eight global bit lines described in Section 4.3 are used as input and output data lines.

www.manaraa.com

68

To avoid the delay of the global lines for the cache operations due to additional switches, we

can place other routing tracks into the space between global bit lines, such as feedthrough.

Since we have already added one additional metal layer for the global bit lines, this layer can

be used to route additional lines. This implies that we have enough vertical routing tracks in

this architecture. This computation is repeated 8 times, once for each row, for 8 rows of an

8x8 image. In the mean time during each computation, the next set of input data is fetched

in another set of input registers and the previous output data is written into an additional

memory. All the intermediate results from the 1-D transform must be stored in a memory and

then loaded for the second 1-D transform which performs the same computations to complete a

2-D transform. Therefore, 2-D DCT/IDCT is computed with two additional memories similar

to the Convolution function. A data flow diagram of the computation process for 8x8 2-D

DCT is depicted in Figure 6.3.

1,2,3,4 for 1-D transform
5,6,7,8 for 1-D transform to complete 2-D transform

© 1 © ©
Input Shift Re;.

©

©, ,®
Storage for
input image

and
Storage for

2-D transform

RC (8 PEs)

with 1-D DCT
Storage for

1-D transform

©
Output Shift Rej ;•

© ©

Figure 6.3 Data flow of the computation process for 8 x 8 2-D DCT trans
form

Several other opportunities for reconfigurable units exist in this architecture as described

below.

• The flexible use of the shift registers working as normal registers for the main on-chip

ALU which is an approach similar to [9]. Since the registers are not an integral part of

the cache operations, it is easy to convert them.

www.manaraa.com

69

Although the width of coefficients in the ROM configuration is fixed at 16 bits in this

example, the coefficient width is flexible in this architecture between one and sixteen.

Moreover, the width of input elements can be easily extended by adding more shift

registers without modifying the current configuration.

• The emulation of a ROM in the RFC does not imply fixed processing coefficients. Hence,

different sets of coefficient values can be loaded using the conventional cache operation

for the other distributed arithmetic operations.

6.1.3 Reconfigurable cache merged with multi-context configurations

Since we implement Convolution and DCT/IDCT in the same RFC framework, we can

merge the two functions into one RFC. With the concept of multi-context configurations

mapped into multi-bit output LUTs and individual interconnections, the RFC can be con

verted to either of two function units. The placement of LUTs is shown in Figure 6.4.

L4 H""* ,b"H t* "*' 4» ""4 H * "" 4

part I

,,, : 2bit

^isib/

paît I

: 2bii

Sfa : Add/
: Sub.

consL
mulL
paît I

2bii
2bit
adder Add/
2bit
adder

Sub.

paît 1

^ : 2bk

! sAr

16x16
ROM

: 2bit

*** \s$L'
«. • : 2bit

Add/
Sub.

: Add/
-Sub.

2bit :
adder :

2bit
2bic
adder Add/
2bic
adder

Sub.

2b it
adder

2bit
2bit
adder Add/
2bit
adder

Sub.

2bit
adder

2bit
2bit
adder Add/
2bit
adder

Sub.

2bit
adder

2bit
2bic
adder Add/

Sub.

2bit
adder

: 2bit

2bit
adder

: 2bit

16x16
ROM

2bit

Add/
Sub.

Add/
Sub.

Figure 6.4 An array of LUTs for the combined RFC with Convolution and
DCT/IDCT

A combined RFC with two functions takes less area than the sum of the areas of two

individual function units because the additional area cost is due to interconnections only. The

logic is absorbed in the available cache memory based LUTs. The required interconnection for

each function is placed independently together in the combined RFC, which implies that there

is no sharing of interconnection between the two functions. As described in Section 5.1, we

www.manaraa.com

70

use fixed interconnection since it takes less area and propagation time than the programmable

interconnection. The actual area of the RFC framework (base array cache) and interconnection

is shown in the last part of Section 6.2.

6.2 Area

To measure the actual area overhead of cache array-only for both memory cell array cache

and base array cache, we experimented with layouts of the RFC with only Convolution, only

DCT/IDCT, and with both functions. As we compare the access time of RFC for cache

operations in two cache models, the memory cell array cache and the base array cache in

Section 4.4, the area overheads are estimated with respect to the two cache models.

Figure 6.5 represents one stage of the Convolution unit in the RFC described above. The

pipeline registers are not shown in the figure. According to our layout experiment, the total area

of the reconfigurable module including the pipeline registers with an FIR filter, which supports

up to 256 taps, is 1.53/1.12 times the area of data array in the memory cell array cache/the

base array cache without other logic components, respectively (described in Section 4.4). To

see the exact area overhead of memory array-only, We consider the area overhead of RFC with

respect to the base area of only the data cache array, which does not include the additional

cache logic — specifically, row/column decoders, tag/status-bit part, and sense amplifiers. The

percentage of RFC area overhead would appear to be even lower, had we inflated the base area

by including the area for these logic components. However, the actual area overhead remains

the same.

Figure 6.5 A possible layout of RFC for one stage of the Convolution

www.manaraa.com

71

For the DCT/IDCT function unit on an RFC, the required interconnection is fixed just

as in the Convolution cache module. In the DCT/IDCT function, no complicated routing is

required and the number of LUT rows in the RFC is less than that for the FIR filter while the

number of registers is higher. Thus, according to our experimental layout for DCT/IDCT, the

total area of the DCT/IDCT module is 1.48/1.09 times the area of data array in the memory

cell array cache/the base array cache, respectively, including the accumulating registers and

the shift register at the in/out port. Again, those basic units, such as row/column decoders,

tag/status-bit part, and sense amplifiers, are not included in this comparison as mentioned

above.

In Table 6.1 and Table 6.2, the area overhead of FIR and DCT/IDCT in the RFC is

compared with designs for these functions previously reported in the literature. The designs

we compare within this thesis are from the literature of the last 10 years. We compare our

result to the best-area implementations in the literature. We have estimated the area for an

RFC in A2 by scaling À from 0.25(j.m to 12fj,m (some of them are not shown in the tables).

As we explained in Section 4.4, the area overhead for RFC is also estimated with respect to

the two base cache architectures. For the memory cell array cache, the area overhead includes

the dedicated decoders, switches, RFC-interconnect, and the required registers while the area

overhead in the base array cache with the parallel decoding and segmented bit/word lines

consists of only the interconnect and the registers. Some of these designs include pads area.

For a fair comparison, only the core sizes are listed in both tables by estimating the axea of the

core part of the entire chips. Also, the area overhead of RFC in the tables is the area of only

additional units to support the functions implemented. In other words, the original cache area

is not included in the area overhead. The core area of design in [64] shown here is estimated

in [62].

In Table 6.2, the core area of 1-D IDCT in design [66] excludes I/O pads and buffer axea.

We scale the reported total area by the proportion of the reported core area to the reported

total area. The area of FIR and DCT/IDCT in the RFC includes all the required registers

such as pipeline registers for FIR and accumulating/shift registers for DCT/IDCT.

www.manaraa.com

72

Table 6.1 Area comparison of FIR Filters and RFC overhead for FIR

Yoshino et al. [62] Hatamian-Rao [63] Ishikawa et ai. [64]

Number of Taps 64 40 15,19
Coefficient

Word-length
14 bits
(fixed)

12 bits
(programmable)

8 bits
(fixed)

Technology 0.8fim BiCMOS 1.2fivn
Core Area 49 mm2 22 mm2 80 mm2

FIR Filter in the RFC (area overhead of the cache)

Number of Taps 256 taps (with 8 physical taps)
Coefficient Word-length 8 bits

Technology 0.8 fim 0.9 [xm 1.2fj,m
Area Overhead1 11.28 mm2 14.28 mm2 25.39 mm2

Area Overhead2 3.45 mm2 4.37 mm2 7.77 mm2

% for area overhead1 53% of area for array-only of the memory cell array cache
% for area overhead2 12% of area for array-only of the base array cache

1 Area overhead of the "only" memory cell array
2 Area overhead of interconnections and registers regarding the "only" base cache array
described in Section 4.4

Table 6.2 Area comparison of DCT/IDCT chips and RC overhead for
DCT/IDCT

Masaki et al. [66] Madisettii-Willson [67] Uramoto et al. [68]

Function 1-D IDCT 8x8 DCT/IDCT 8x8 DCT/IDCT
Technology 0.6 fim 0.8 (J.TTI 0.8 fj.m
Core Area 9.4 mm2 10 mm2 21.21 mm2

8x8 DCT/IDCT in RC (area overhead of cache)

Technology 0.6y^m O.Sfim
Area Overhead1 5.9 mm2 10.5 mm2

Area Overhead2 1.51 mm2 2.68 mm2

% for area overhead1 48% of area for array-only of the memory cell array cache
% for area overhead2 9% of area for array-only of the base array cache

1 Area overhead of the "only" memory cell array
2 Area overhead of interconnections and registers regarding the "only" base cache array
described in Section 4.4

www.manaraa.com

73

Most of the reported FIR filter designs have fixed coefficients with as many physical MACs

as the number of taps. Although coefficients are programmable in [63], only 40 taps can be

supported for various types of filter. Besides, the time taken for run-time reconfiguration in a

serial fashion is high due to the limited number of pins. The time of run-time reconfiguration

of coefficients in the RFC is much smaller because multiple LUT writes are achieved per cache

write operation. For a fair comparison, the area per tap can be calculated roughly in each

filter by dividing the core area by the number of taps. According to the area per tap, the area

of a tap in the RFC is larger than others with respect to the memory cell array cache while

the area per tap in the RFC is smaller than others with respect to the base array cache area

overhead. Although only 8 taps are implemented physically in the RFC, the FIR cache module

can support up to 256 taps with fast configuration not visible to the application.

Since some of the filters have a different word length, we compare the axea of 16x16

constant coefficient multiplier and 32-bit accumulator (MAC) implemented in the RFC with

the same word length of MAC as presented in [69, 70]. Since constant coefficient multipliers are

used in most DSP and multimedia applications, we implemented a 16x16 constant coefficient

multiplier, one MAC stage for FIR. The MAC area is estimated based on the number of LUT

rows used and interconnection in RFC. In our experimental layout, the MAC (16x16) area in

the RFC is less than or equal to two times the area of one MAC stage of Convolution (8x8) in

the RFC. This area is smaller than that of the existing MACs as shown in Table 6.3 in both

cases. This implies that an FIR filter with 16-bit word-length can be easily implemented in

the RFC with a similar axea overhead for four physical taps. However, it can still support up

to 256 taps.

Note that the designs reported in [62] and [63] implement FIR with 14-bit and 12-bit

coefficients, respectively, while we report RFC area overhead for an 8-bit coefficient design. It

is hard to develop a precise analytical model for the area parameterized by the number of bits

in a coefficient. Some parts (such as multiplier) may scale non-lineaxly with the number of

coefficient bits depending on the algorithm. Some parts would scale sub-linearly such as control

and global routing. For an approximate comparison, we assume that the area scales linearly

www.manaraa.com

74

Table 6.3 Area comparison of Multiplier-Accumulator's and RC overhead
for one MAC stage

Izumikawai et al. [69] Lu-Samueli [70]

Size of In/Out 16bxl6b/32bits 12bxl2b/27bits
Technology 0.25 fj.m l.O^m

Area 0.55 mm2 (core) 9.30 mm2 (chip)

MAC in the RC (area overhead)

Size of In/Out 16bxl6b/32bits
Technology 0.25 fim 1.0 fj.m

Area Overhead1 0.28 mm2 4.41 mm2

Area Overhead2 0.08 mm2 1.35 mm2

% for area overhead1 51% of area for array-only of the memory cell array cache
% for area overhead2 11% of area for array-only of the base array cache

1 Area overhead of the "only" memory cell array
2 Area overhead of interconnections and registers regarding the "only" base cache array
described in Section 4.4

in coefficient width. Hence, the 8-bit version of [62] would take area 28mm2 (^ x 49mm2)

and for [63] the area would be 14.7mm2 x 22mm2), which are comparable to the RFC area

overhead for FIR. The main advantage of RFC for FIR is the reconfigurability which allows the

RFC-FIR to have a virtually infinite number of taps unlike other customized FIR chips. The

number of taps is also configured with a faster reconfiguration time. We, therefore, conclude

that the area per tap for RFC is comparable to that of the customized FIR chips.

The area of the previous designs for DCT/IDCT in Table 6.2 is larger than the proposed

DCT/IDCT cache module except [67] with respect to area overhead of the memory cell array

cache. The 2-D DCT/IDCT functions are implemented with a similar procedure as in the

DCT/IDCT cache module - two 1-D DCT steps. Since the DCT function is implemented

using a hardwired multiplier in [67], the area is smaller than the cache module with respect to

the area overhead of the memory cell array cache. However, the area overhead with respect

to the base array cache is smaller than all the previous designs shown in the table. The DCT

function in [68] has two 1-D DCT units, so the area of one 1-D DCT unit is roughly half of

www.manaraa.com

75

the overall area which is still larger than the RFC overhead.

In the combined multi-function. RFC, each function needs a fixed interconnection topology.

Therefore, the total area of interconnection occupied by the two functions in the combined RFC

is the sum of the individual interconnection areas for Convolution and DCT/IDCT". According

to our experimental layout of the combined cache, the total area of the RFC with two functions

is 1.63/1.21 times the area of data array in the memory cell array cache/ the base array cache,

respectively, with all the required registers and without other components described above.

The actual area of the combined cache module is shown in Table 6.4.

Table 6.4 Area overhead of the combined reconfigurable cache

Function FIR, DCT/IDCT
Technology 0.6fj,m 0.8 fj,m l.Ofim 1.2 fxin

Interconnect & registers
for FIR

1.94 mm2 3.45 mm2 5.39 mm2 7.77 mm2

Interconnect «^registers
for DCT/IDCT

1.51 mm2 2.68 mm2 4.19 mm2 6.04 mm2

RFC framework
(base array cache)

4.41 mm2 7.83 mm2 12.24 mm2 17.62 mm2

Area Overhead1 3.45 mm2 6.13 mm2 9.58 mm2 13.81 mm2

Area Overhead2 7.86 mm2 13.96 mm2 21.82 mm2 31.43 mm2

% for area overhead1 63% of area for array-only of the memory cell array cache
% for area overhead2 21% of area for array-only of the base array cache

1 Area overhead of the "only" memory cell array
2 Area overhead of interconnections and registers regarding the "only" base cache array
described in Section 4.4

Since the decoders for LUTs account for most of the area overhead in the RFCs, adding

more interconnection does not add much area in the combined RFC. The base array cache

described in Section 4.4 consists of dedicated 4-to-lô decoders, four address lines, an_d a number

of switches to connect the local bit lines to the global bit lines. The area of combined RFC

is smaller than the sum of smallest areas in the existing FIR and DCT/IDCT function units

in both cache models. This implies that we can add additional multiple functions in the

www.manaraa.com

76

existing RFC with a relatively small area overhead. The interconnection area for individual

functions is also listed in Table 6.4. Moreover, since some part of the area for routing tracks

between the two functions is overlapped, for example, adders, constant multiplier, and ROMs,

the axea of interconnection in the combined RFC may be less than the sum of two individual

interconnection areas. The fixed interconnection for the functions can be efficiently routed and

does not take much area. The placement and routing of the RFC has been done manually as

a first cut. We can expect the area overhead to reduce further if we place and route carefully.

6.3 RFC with different cache organizations

We described the RFC for computations based on an 8KB size of cache memory with 512

sets and 16-byte cache line in Section 6.1. In this section, we show how different cache organiza

tions for an 8KB sized cache memory work for the RFC. The RFC for the filtering operations,

shown as an FIR filter in Section 6.1.1, can be implemented in various cache organizations in

8KB. Figure 6.6 shows the implementations of filters using the RFC in different cache orga

nizations with respect to the number of sets and size of cache line. In the figure, one block

of 2KB represents a MAC (Multiply-and-Accumulate) stage for a 16-bit constant coefficient

multiplier and a 32-bit accumulator implemented in the RFC while an 8-bit constant coeffi

cient multiplier and a 24-bit accumulator is implemented in 1KB as presented in Section 6.1.1.

This mapping organization can be applied to any other computations (such as DCT/IDCT) as

long as the required number of LUTs to implement a function is satisfied in a cache memory

size. The axea overheads of RFCs in the different organizations are similar to that of the RFC

(8KB with 512 sets and 16-byte line) shown in Section 6.2 because the number of LUTs is the

same and the interconnection is not much varied. The arrows in the figure represent a flow of

pipeline stages to perform a filtering operation. Note that eight MAC stages are mapped into

a 16KB cache memory with 256 sets and 64-byte line using a mapping scheme similar to 8KB

sized cache memory. This indicates that a higher number of stages or processing elements can

be added into a larger sized cache memory without any significant modification. In addition,

if the number of sets in a cache reduces, the number of cache lines to be configured reduces

www.manaraa.com

77

since more LUTs can be written simultaneously using a cache write operation for a line. This

is one advantage of using cache memory for LUT-based reconfigurable logic. The shaded parts

in each MAC in the figure show the portion to be reconfigured partially for the constant coeffi

cient multiplier, especially in the FIR filter. Thus, the amount of time for the configuration is

determined by the number of sets and cache line size, not the number of LUTs for a function.

Output

16bytes lobytes L6bytes lobvtes

2KB 2KB
MACO MAC 1

2KB
MAC 2

(a)

Output

mbytes mbytes

2KB
MACO

2KB
MAC 3

2KB
MAC 1

2KB
MAC 2

(b)

2KB 2KB 2KB
MACO MAC 3 MAC 4

2KB 2KB
MAC 1 MAC 2

2KB
MAC 3

Output

lobytes lobytes lobytes lobytes

2KB
MAC 7

2KB
MBBËBBBËR

2KB
MAC 5 MAC 6

(c)

Figure 6.6 A filter (16mult-32acc) with (a) 128 sets and 64 bytes/line
(8KB); (b) 256 sets and 32 bytes/line (8KB); (c) 256 sets and
64 bytes/line (16KB)

www.manaraa.com

78

6.4 Execution time

In this section, we show the execution time comparison for Convolution and DCT/IDCT

as presented in [28, 29]. In this experiment, we compare the performance of these functions

on a Sun UltraSPARC workstation with their execution time derived from a model using an

RFC. These models are based on various computing parameters, such as the number of taps

and the size of images. The RFC computing time model assumes that all input/output data is

available in cache memory with no stalls. Hence, the modes based performance is a best case

scenario. The simulation results of a processor integrating RFCs are shown in Chapter 7.

6.4.1 Convolution

We compare the execution time of the FIR filter using a reconfigurable functional cache

(RFC) to a conventional general purpose processor (GPP) running the algorithm in Equa

tion 6.1. Since the RFC may have to be flushed, we show the results for the following two

cases. In the first case, no data in the cache needs to be written back to main memory before

it is reconfigured as the function unit, for example, caches with write-through policy. In the

second case, the processor has to flush all the data in the cache before configuring it (i.e. writ

ten back to the main memory). The extra time is denoted by the ''flush time' and is required

for write-back caches.

The total execution time of the Convolution in the RFC consists of configuration and

computation times. The configuration time includes the times for adder and constant coeffi

cient multiplier configuration. In the second case, the cache flush time is also added to the

configuration time. The actual parameter values to compute the times are given in Table 6.5.

We chose the values to be as conservative as possible with respect to SPARC Hi processor

cycle time at 270 MHz [51] (where the GPP simulation was performed). The access time for

the data cache in SPARC IK processor is 1 cycle in a pipelined fashion (it is a 16KB direct

mapped cache with two 16B sub-blocks per line). In a typical processor, this access time can

be anywhere from 1-2 cycles. Hence, we chose 3 cycles for the cache access time in RFC for

a conservative model. Had we chosen a lower cache access time (1 or 2 cycles), the RFC

www.manaraa.com

79

execution time would appear to be even more favorable since other parameters, such as LUT

read time in RFC, were based on the cache access time - 3 cycles (12ns). The main rruemory

access time is 20 cycles. The parameters for the cache structure are based on an 8KZB size

cache with 8 words per block and 16 bits per word (£cac/ie> Llut> and Wn). Since 8 words

in a cache block are stored in an interleaved fashion, each bit of one word is stored e very 8

bits. The 1st and 9th bits of a LUT content can be written in the LUT simultaneously by

writing one word (parameter m=2). The computation time of one stage/PE in the RZFCs is

chosen by the following factors. Each stage in the Convolution function unit requires three

LUT reads (with additional time for propagation through a number of multiplexers) while

each PE in DCT/IDCT unit does two LUT reads with additional time for multiplexers. We

use read time for a LUT of 8ns with the multiplexer propagation time - less than the- cache

access time because the LUT is much smaller and faster than the 8KB cache memory/. The

expressions for the times are presented below.

• Config. Time for adder

= [(fimem/cpu)(m)(.l-JLUT) + {,Rcache/cjm)('rfi)(^J cache J-'LUT x S)] X Tcpu

• Config. Time for constant multiplier

— (R-mem/cpu) (m) (^LUt) (TAP) X-Tcpu

• Cache Flush Time

™ (Hmem/cpu) (Wn) (-^coc/te) x ^cptt

• Computation Time

= [C2^) X (X + 2S-1)] X T__stage

In the computation time, we add 2S instead of S for the initial pipeline steps because

we exploit the double pipelined input data in each stage of the Convolution as shown in

Figure 6.1(a). In addition, we separate the configuration time for adders and multipliers. The

reason for this is that only one set of data for a LUT is necessary when reconfiguring the LUTs

www.manaraa.com

80

for adders because the contents of all the LUTs are the same, while a different configuration

data is necessary for multipliers. The time for storing and loading input and intermediate data

can be overlapped with the computation time. Therefore, data access time for the computation

is not added.

Table 6.5 Parameters for the RFCs

Parameter Description Values

Tcpu One cpu cycle time 4ns

T_stage The time to complete the computation
in one stage/PE

24ns/16ns

Rmem/cpu Main memory access latency 80ns

R-cache/cpu Cache memory access latency 12ns

L cache. Number of cache lines in the cache 512
LLUT Number of contents in a LUT 16
Wn Number of words per cache block 8

a
Number of bits required to configure a content of
one LUT for a 2-bit adder with 3bits for carry=0
and 3bits for carry=l & for the half of a 4x8 constant
coefficient multiplier

6

r Number of bits required to configure a content of LUT
for a ROM

16

m Number of bits to be written by one word when configuring 2
S Number of taps/PEs implemented in the RC 8

Parameters for Convolution

TAP Number of taps 8 - 256
X Number of data 64 - 8192

Parameters for DCT/IDCT

% The width of input elements 8 bits
N The size of a basic block image 8

IMG The size of an entire image 8x8 -
1920x1152

The execution times for RFC and the GPP are shown in Table 6.6. We assume that all

the input data fit into a data cache for both the RFC and the GPP computations according

to the following observation. We traced the number of cache misses in the GPP for all the

cases in Figure 6.6. From the trace we found that regardless of the number of taps and data

www.manaraa.com

81

elements in the computation, the number of cache misses does not vary with the execution

time. Therefore, we neglected the effect of the cache miss penalty in the comparison. We

simulated Convolution with floating point variables instead of integers which leads to faster

processing in GPPs. The choice between memory cell array and base array determines cache

access time in GPPs. As we explained in Section 6.6. the RFC based on memory cell array

will give smaller access time in a GPP even for other applications while the RFC based on base

array will increase the cache access time by 1-2%. We have assumed the cache access time in

the GPP and in the processor with RFC to be the same for both cache types (memory cell

array or base array).

Table 6.6 Comparison of execution time of Convolution between SPARC and RFC
(fjsec)

No. No. RFC RFC
of Data SPARC w/o memory flush Ratio w/ memory flush Ratio

Taps elmt (269.8 MHZ) config compute config compute

256 384.58 6.50 7.01 6.50 1.01
8 1024 1553.36 48.38 24.94 21.19 376.06 24.94 3.87

4096 6307.85 98.66 42.90 98.66 13.29
8192 12605.09 196.97 51.38 196.97 22.00
256 735.18 13.01 7.98 13.01 1.75

16 1024 2963.83 79.10 49.87 22.98 406.78 49.87 6.49
4096 11928.19 197.33 43.15 197.33 19.75
8192 23893.06 393.94 50.51 393.94 29.84
256 1435.98 26.02 8.62 26.02 2.91

32 1024 5792.27 140.54 99.74 24.11 468.22 99.74 10.20
4096 23270.04 394.66 43.48 394.66 26.97
8192 46540.36 787.87 50.13 787.87 37.05
256 2840.07 52.03 9.00 52.03 4.42

64 1024 11465.30 263.42 199.49 24.77 591.10 199.49 14.50
4096 45898.64 789.31 43.60 789.31 33.25
8192 91831.01 1575.74 49.93 1575.74 42.38
256 5651.69 104.06 9.22 104.06 6.01

128 1024 22737.80 509.18 398.98 25.04 836.86 398.98 18.40
4096 91360.32 1578.62 43.76 1578.62 37.82
8192 182750.06 3151.49 49.92 3151.49 45.82
256 11265.51 208.13 9.32 208.13 7.33

256 1024 45287.32 1000.70 797.95 25.18 1328.38 797.95 21.30
4096 183016.17 3157.25 44.02 3157.25 40.80
8192 368557.75 6302.98 50.46 6302.98 48.30

www.manaraa.com

82

The speedup of RFC over the GPP for Convolution is shown in Figure 6.7. Our results

show that the RFC provides a better performance improvement than the GPP as the number

of data elements increases. Figure 6.7 shows that the performance improvement is almost

independent of the number of taps without memory flush in (a). The ratio of the computation

time with less taps decreases with memory flush in (b) because the flush time affects the ratio

of the total execution time more with the decrease in the number of taps.

8 Taps ——
16 Taps —•—
32 Taps ——r-
64 Taps

128 Taps-
2 5 6 T a f > s - — - .

1024 2048 4096 8192 64 128 256 512

8 Taps
16 Taps
32Taps
64 Tac»

128 Ta»

64 1024 2048 4096 8192 128 256 512

Number of Data elements Number of Data elements

(a) (b)

Figure 6.7 Ratio of execution time of RFC and GPP for Convolution: (a)
without memory flush; (b) with memory flush before converting
into the computing unit

6.4.2 DCT/IDCT

As described in Section 6.1.2, the 2-D DCT/IDCT can be completed by two 1-D transforms.

This procedure is similar to the data caching scheme which is adapted for the FIR filter

module (i.e. two additional memories for processing with intermediate data). We compare the

execution time of the 2-D transforms in RFC and the GPP executing the fast DCT algorithm

described in Section 6.1.2. As in the previous example, the two cases of cache 'flush time', no

cache flush and cache flush, are considered in this section.

The total execution time of the DCT(IDCT) in the RFC consists of configuration and

computation times. The configuration time includes the writing times for the contents of

ROMs and adders. In addition, in the case of cache flush, the cache flush time is also to

www.manaraa.com

83

be added in the configuration time. The actual parameter values to compute the times for

this function used are the same as for the Convolution in Table 6.5. The expressions for the

execution times are presented below.

• Config. Time for accumulators and pre (or post)-adders/subtracters

= [(•Rmem/cpu)(^)(-£'£C/r) + {Rcache/cpu)(^)((S + 2) X I.£ut)] X

» Config. Time for ROM

~ [(-^mern/cpu)(m)(.S x LLUT)] x -Zcpti

• Cache Flush Time

(R-mem/cpu) (^n) (-^cac/ie) * -^cpu

• Computation Time

= [2 x (1-D transform)] % (Basic âock size^ stage — [2 x (iV+Wd x iV)] x xT_stage

The cache 1 flush time' is the same as earlier. Configuration data needs to be written to

all the PEs once only because all the data elements in an image are processed with the same

coefficients using the distributed arithmetic. The configuration procedure of the Convolution

in the previous section is applied to DCT/IDCT. As described earlier, the time of loading and

writing all the in/out data from/to memories can be overlapped with the computation. Thus,

only the initial loading and the final writing time, which is overlapped in the transition of

data set, is added to the computation time of each 8x8 1-D transform for data access time.

In this configuration, the adder is used as both a 16-bit adder and a 16-bit subtracter with 2

sets of configuration data. Since only one of the pre/post-adders (subtracters) is necessary for

DCT and IDCT, respectively, the configuration time of pre-(or post)adders/subtracter with

the same configuration scheme is added in the execution time.

The execution times of the GPP and RFC are shown in Table 6.7. The assumption regard

ing the cache misses of data mentioned in Section 6.4.1 has been applied to this simulation.

Therefore, the main memory access time is not considered for in/out data of the computation.

For a larger size of image than the basic block, 8 x 8, we partitioned the entire image into

www.manaraa.com

84

a number of basic block images. We assume that the cosine weighted factors are pre-stored

as coefficients in an array when the GPP processes the DCT/IDCT, which means the actual

cosine coefficient computation is not performed in the GPP. It is much faster than the com

putation with the actual cosine factors. Again, floating point variables are employed in our

simulation of DCT/IDCT for faster processing in the GPP.

Table 6.7 Comparison of execution time of the DCT/IDCT between SPARC and
R F C (f j s e c)

No. of RFC RFC
Size of 8 x 8 2-D SPARC w/o memory flush Ratio w/ memory flush Ratio
Image (I) DCT (269.8MHZ) config compute config compute

8 x 8 1 168.86 101.12 2.30 1.63 428.80 2.30 0.39
16 x 16 4 641.85 101.12 9.22 5.82 428.80 9.22 1.47
32 x 32 16 2346.78 101.12 36.86 17.01 428.80 36.86 5.04
64 x 64 64 9276.67 101.12 147.46 37.32 428.80 147.46 16.10

128 x 128 256 37498.88 101.12 589.82 54.27 428.80 589.82 36.81
256 x 256 1024 148428.84 101.12 2359.30 60.33 428.80 2359.30 53.24
512 x 768 6144 859776.81 101.12 14155.78 60.31 428.80 14155.78 58.95

1920 x 1152 34560 4850821.01 101.12 79626.24 60.84 428.80 79626.24 60.59

According to the speedup in Figure 6.8, the RFC for DCT/IDCT has a better performance

improvement over the execution time of the GPP as the size of input image increases. The

performance improvement is roughly independent of the memory flush in the larger size of

images. Since the computation is ROM based, only the initial configuration is necessary.

Thus, the larger sizes in the results, 512 x 768 (TV-image) and 1920 x 1152 (HDTV), do not

rely on the flush time. For MP@HL (Main Profile at High Level) decoding, the maximum

allowable time to process a macroblock is 4.08/zs [66]. The result shows that it is possible to

process a block in 2.30^s.

6.4.3 Multi-context reconfigurable functional cache

There is no difference between individual and combined caches in terms of the execution

time. However, the combined cache may have a slightly higher propagation delay due to longer

wires caused by the inclusion of interconnections, in our instance, this causes 1.6% increase in

www.manaraa.com

85

CL
S 70

a 60

1 50
(D
E 40

w/o mem flush —•—
w/ mgm flush i— ̂

C O 30

20

0

1 s CD

I 1
CO

i 1
s

Size of an Image

Figure 6.8 Ratio of execution, time of RFC and GPP for DCT/IDCT with
and without 'flush time'

cache access time. Therefore, we can assume that both individual and combined RFCs have

almost the same execution performance.

www.manaraa.com

86

CHAPTER 7. SIMULATION

In this chapter, we provide the results of our experiments. We describe the functions im

plemented in RFC in Section 7.1. The simulation environment and parameters (methodology)

are described in Section 7.2. Finally, we measure and compare the performance of a base

processor without and with RFCs in Section 7.3.

7.1 Computing units configured using RFC

In the RFC based on the organization (LUT-based reconfigurable logic) described in Chap

ter 4, we implemented two primitive functions in DSP and multimedia applications, Multiply-

and-Accumulate (MAC) and Distributed Arithmetic (DA). The MAC consists of constant

coefficient multiply and accumulate. The DA unit performs a sum of products with a look-up

table based multiplication in a bit-serial fashion and consists of a ROM and a shifting accu

mulator. This kind of function unit can be used in many of the important DSP and media

applications [72] with a small amount of area.

The MAC implemented in RFC performs a filtering operation with a sliding window of

coefficient with 8 or 16-bit integer and fixed-point data. A floating-point computation in

software can be performed in the DA unit with a binary format of floating-point numbers.

In RFCs, four MACs performed in a pipelined fashion and eight processing elements (PEs)

processed in parallel are implemented. One MAC contains a 16-bit multiplier and a 32-bit

accumulator while one PE includes a 16x16 ROM and a 16-bit shift accumulator. More

details for the actual implementation can be found in Chapter 6. The comparison with the

previous ASIC chips for FIR and DCT in Section 6.2 shows that the area overhead of RFC is

smaller than the core area of those units.

www.manaraa.com

87

7.2 Experimental methodology

7.2.1 Benchmarks

Discrete Cosine Transform (DCT) is the most efficient technique in image encoding and

compression schemes. Two 1-D DCT/IDCT processes can represent a 2-D DCT/IDCT process.

Convolution is a DSP algorithm that multiplies two (integer) arrays of dimension-two and is a

common requirement in signal processing and image processing for pattern recognition, edge

detection, etc.

Using these two algorithms mapped to the computing units in RFCs, we simulated the

most common media processing applications - Motion Picture Experts Group 2 (MPEG2) -

mpeg2encoder [73] and mpeg2decoder [73, 74], Joint Photography Experts Group (JPEG) -

cjpeg encoder [73, 74] using DCT/IDCT and Finite Impulse Response {FIR) [75], Infinite

Impulse Response (IIR) [75] using the concept of Convolution algorithm. The inputs to the

benchmarks are shown in Table 7.1.

Table 7.1 Benchmarks used in this thesis

Benchmark Description with input

mpeg2enc MPEG2 encoding for four 352x240 frames from YUV components
mpeg2dec MPEG2 decoding for DVD (surfer.m2v) into YUV components

cjpeg JPEG encoding for 1024x768 image (8-bit vigo.ppm) into vigo.jpg
FIR 16 / 256 taps with 16K data elements

(need partial configurations - total 4/64 times)
IIR two sets of coefficients (total 9) with 16K data elements

The data type for mpeg2enc/dec and cjpeg is an 8-bit integer and a 16-bit integer for FER

and IIR. The benchmarks are compiled using Simplescalar gcc [71] from the source codes in

UCLA mediabench while some of large application data (for example, DVD) are from Berke

ley Multimedia Workload [74]. The number of filtering coefficients is variable in FIR while

the IIR performs an auto-regressive moving-average (ARMA) filter with four auto-regressive

filter coefficients and five moving-average filter coefficients [75]. Both are processed in 16-bit

www.manaraa.com

88

multiplication, and 32-bit accumulation. The HR is used as a high pass filter in the VSELP

vocoder [75]. In HR, two sets of coefficient window sliding and multiplying arrays are sub

tracted. One time configuration for 8 PEs is required in DCT/IDCT. Since the physical

number of taps (16/32-bit MAC) implemented in RFC is four, we need a partial reconfigura

tion as described in Section 5.2.4.4 to perform more than four physical taps in FIR and HR

with intermediate results reused.

7.2.2 Simulator and parameters

The microarchitecture in Simplescalar simulator [71] is chosen as a base processor in our

simulation. We modified the C source code in the simulator to support the proposed microar

chitecture with the RFCs. The new r/c instructions described in Section 5.2.3 are compiled

using existing load/store instructions with the annotated field in Simplescalar instead of mod

ifying the compiler. However, the operation and effect of those instructions are the same as we

described earlier. We replaced the original code for the targeted computations in the bench

marks with the code for RFCs shown in Section 5.2.5 to configure and exploit the RFC as a

specialized computing unit with the dynamic set associativity. Each benchmark with the RFC

is optimized differently with the rfc instructions to perform each core computation, such as

DCT, DDCT, FIR, and HR in the C source code.

The new instructions are embedded into the source code using inline assembly code with

the substantial address for data in benchmarks. Some of the operations in the corresponding

computation are not mapped to RFC due to the lack of available resources (LUTs) in RFC

or difficulty of the replacement with the rfc instructions, for instance, moving data from one

array to another array. Especially, we could not map one of the coefficient multipliers in IIR

due to the lack of available LUTs. In FIR, an array is copied into another array using a

conventional C code. In the modified simulator, we traced the exact operations of RFC in

each cycle. When input data is loaded into RFC, the simulator holds the data until the RFC

is ready and then, processes the data with the exact number of cycles to be taken in RFC.

Finally, it stores the output to the memory hierarchy. The rfc instructions replace the floating

www.manaraa.com

89

point DCT/IDCT function call in mpeg2 encoder/decoder since the hardware implementation

is comparable to the floating-point computation in software [68]. Similarly, the integer DCT

in cjpeg is replaced with the rfc instructions.

The parameters for the simulation in the base processor are shown in Table 7.2. These are

the same for both the processor without and with RFCs. However, we varied the cache pa

rameters, such as size and associativity. Since the cache access time in RFC is not significantly

increased or even decreased as estimated in Section 4.4, we assumed the Ll cache latency of the

base processor is the same in both the models without and with RFC. The operation latency in

FIR/HR is 3 cycles per pipeline stage for four 4x16 constant multipliers and 20-bit/24-bit/32-

bit adders (four LUT reads and propagation of multiplexers). In DCT/IDCT, the latency is 1

cycle per processing element for a 16x16 ROM and a 16-bit adder (two LUT reads and propa

gation of multiplexers). The DCT/IDCT on the RFC computes the l-D transform for a row of

an 8x8 image with eight PEs in eight cycles (8-bit data) in a bit serial fashion. Additions and

subtractions of input data elements are performed before the computation for DCT/IDCT,

while after for IDCT. Thus, the number of execution cycles for one row in an 8x8 image in

RFC is 9 cycles after loading all the eight input elements. The size of I/O buffers for RFCs is

eight.

7.3 Performance measures

We compare the number of cycles taken to execute each application with various cache

parameters. First, we show the cache organization with RFCs built in each module (way) as

depicted in Figure 5.3 (a) - full dynamic associativity (FDA). Next, we compare the result

of the above organization with that of the alternate cache organization shown in Figure 5.3

(b). The further partitioned cache uses one smaller module for the reconfiguration to re

duce the performance impact using the partial dynamic associativity (PDA) as described in

Section 5.2.2.

FDA: Figure 7.1 shows the total number of execution cycles, which is normalized to the

execution cycles with 32K 2-way set associative cache, in mpeg2dec, mpeg2enc, cjpeg, FIR-

lôtaps, FIR-256taps, and HR. The graph also shows the fraction of cycles taken by the core

www.manaraa.com

90

7.2 The base processor parameters with RFC and without RFC
Simplescalar simulator

Issue width 8

Instruction RUU: 64

window size LSQ: 64

Functional units
- integer arithmetic 4

- integer multiplier I

- floating point arithmetic 4

- floating point multiplier 1

LI data cache
- size 32KB, 64KB, 128KB

- associativity 2 / 4-way

- line size 64 bytes

- hit latency 2 cycles (same for both)

LI inst. cache
- size 64KB

- associativity 2-way with 64B line

- hit latency 2 cycles

L2 cache
- size 1MB

- associativity 4-way with 64B line

- hit latency 10 cycles

Memory
- access latency 60 cycles for 64B

(pipelined)
- memory bus width 8 bytes

- memory ports 4

TLB
- D-TLB 512KB

- I-TLB 256KB

- miss latency 30

Branch prediction
- bimodal predictor size 2KB

- branch mis-prediction latency 3

- return address stack size 8

www.manaraa.com

91

computation mapped into RFC (DCT, IDCT, FIR, and HR) in the benchmarks of the base

processor without RFC and with RFC (including configuration time).

The performance improvement is shown as an overall speed-up in Figure 7.2. The speed-up

of each core computation performed in the RFCs is also shown in the figure. The specialized

computing units configured from RFCs improve the performance of each core function signif

icantly. However, the overall speed-up relies on the frequency of those function calls in the

entire application. The speed-up for FIR with 256 taps is higher than with 16 taps although

the number of partial configurations for 256 taps is 16 times more than that for 16 taps. This

implies that the configuration time is not a dominating factor for the performance if a large set

of data is processed. The configuration time is compensated by accelerating the performance

of core computation.

Various cache organizations: Our simulation shows that the number of execution

cycles in the benchmarks using RFC as a specialized computing unit is smaller than that of

the base processor without RFC in all the cases except the 32/64KB 2-way set associative

cache in mpeg2enc. To see the effect of cache organizations, we simulated the benchmarks

with various cache organizations in the base processor as shown in Figure 7.3 (mpeg2dec,

mpeg2enc, cjpeg) and 7.4 (firlô, fir256, iir). In the figure, the execution cycles are normalized

to the 16KB direct-mapped cache memory. The level-1 data cache miss rate for each benchmark

is also shown. Note that the other parameters remain the same with the above simulation.

Unlike the relatively low effect in other cache organizations, the direct-mapped cache for

mpeg2enc increases the number of execution cycles by about 16.1% for 16KB and 7.2% for

32KB due to the significant increase in the cache misses. Thus, the performance degradation

in using RFC is caused by the reduction in cache capacity to half and in associativity to direct-

mapped, when RFC is configured for mpeg2enc. However, in all other cases of the benchmarks,

a larger cache memory hardly increases the performance as we stated in Section 1. Note

that FIR (16 taps) and IIR with the direct-mapped cache degrades the performance slightly

compared to other organizations. However, the use of RFC in 2-way set associative caches

does not scale down the performance significantly. The low effect of the dynamic associativity

www.manaraa.com

92

|DBase w/o RFC SCORE portion w/o RFC DBase w/ RFC BCORE portion w/ RFC]

32K- 64K- 64K- 128K- 32K- 64K- 64K- 128K- 32K- 64K- 64K- 128K-
2way 2way 4 way 4way 2way 2way 4way 4way 2way 2way 4 way 4way

mpeg2dec mpeg2enc cjpeg

10 Base w/o RFC Q CORE portion w/o RFC 0 Base w/ RFC U CORE portion w/ RFC]

100

8 60

e

1
40 --

5
20

oi
to

32K- 64K- 64K- 128K- 32K- 64K- 64K- 128K- 32K - 64K- 64K - 128K-
2way 2way 4 way 4way 2way 2way 4way 4 way 2way 2way 4way 4 way

FIR (16taps) FIR (256taps) IIR

Figure 7.1 Normalized execution cycles in the base processor w/o and w/
RFC

www.manaraa.com

93

•Overall • Core function

27.40 27.42 27.42 27.44

24.43 24.60 24.58

5 334

32K- 64K- 64K- 128K-
2way 2way 4way 4way

mpegdec

32K- 64K- 64K- 128K-
2way 2way 4way 4 way

mpegenc

32K- 64K- 64K- 128K-
2way 2way 4way 4 way

cjpeg

u Overall BCore function

10.18 10.14 10.18 10.14

6.63 6.59 6.63 6.57

3.17 3.16 2.95 3.00

32K- 64K- 64K- 128K-
2way 2way 4way 4 way

FIR (16taps)

32K- 64K- 64K- 128K-
2way 2way 4way 4way

FIR (256taps)

32K- 32K- 64K- 128K-
2way 4way 4 way 4 way

IIR

Figure 7.2 Speed-up of benchmarks using RFCs (overall and core compu
tation)

www.manaraa.com

94

is because many instructions in those applications are replaced with r f c instructions. In most

of benchmarks, the direct-mapped cache with a smaller size slightly increases the number of

execution cycles. The reason for that is the large number of sets in direct-mapped caches could

distribute the blocks to be mapped to the same location (set) into other sets.

PDA: The effect of the dynamic associativity degrades the overall performance in mpeg2enc.

We partition a cache memory further with the minimal size of RFC as shown in Figure 5.3(b).

This partial dynamic associativity can reduce the impact of the reconfiguration compared to

the full dynamic associativity when reconfiguring. The further partition in 64KB 2-way cache

for mpeg2enc increases the overall performance by 1.05% as shown in Figure 7.5, unlike in

64KB 2-way with the full dynamic associativity (0.99%). However, the 32KB 2-way cache

with the smaller partition still degrades the performance to 0.98%. The number of execution

cycles in other cases is slightly decreased as compared to those of the full dynamic associativity

for RFC. We show the miss rates in the simulations using the partial dynamic associativity

for RFC in Figure 7.6. The number of cache misses decreases with the partial dynamic as

sociativity in most cases because only a small portion of address space is mapped to the low

associative sets in a cache.

2-way vs. 4-way: The RFC built in a 2-way set associative cache increases the number

of cache misses significantly in mpeg2enc. Even with the partial dynamic associativity, the

2-way set associative cache does not produce the performance of the other organizations in

mpeg2enc due to the low associativity. To reduce the impact of low associativity, which causes

the conflict misses, we simulated mpeg2enc with the same size of cache memory (32KB), but

with 4-way associativity (8KB-RFC in each module). In Figure 7.7, the execution cycles with

various cache organizations of 32KB are normalized to that with the 32KB 2-way associative

cache. The results show that the 4-way set associativity improves the overall performance

similar to that of other cache organizations in Figure 7.1. This implies that the conflict misses

of data in the same address space are reduced significantly by increasing the associativity.

Therefore, we conclude that at least 4-way associativity is preferred to embed the RFC into a

www.manaraa.com

www.manaraa.com

96

|BOiwct-<napp«d *2-way 04^##y|

3 O.OÎ5

0.005

Fm-i6tapc
32KB 64KB

FIR-16tSpS

|gDWe(^napp#d M2-w«y 04-woyj •̂ •Dlmct-mapped -#-2-wzy 4-way |

a&2 90.1 98.1

0.005

0.004

0.001

32KB 64KB

FIR - 256taps
32KB 64KB

FIR - 25 Steps

BDiwct-mappod 12-wy D4-«ray|

91 J) 91.0 91 0

»Oiract-mapp«d -^2-way -^~<-way|

IIR

Figure 7.4 Normalized execution cycles with various cache organizations

www.manaraa.com

97

Dw/o RFC •F-D-Aw/RFC BP-D-A w/RFC

110.42

102.13

99.87 100-37 100.00 99.81

94.97
93.21 93.20

32K-2way 64K-2way 128K-4way

Figure 7.5 Normalized execution cycles for mpeg2enc with Full Dynamic
Associativity (FDA) and Partial Dynamic Associativity (PDA)

|-»-mpeg2dec -*-mpeg2enc -A-cjpeg HB-FIR-16 -3E-F1R-256 -#-IIR |

0.04

0.035

0.03

(A 0.025

0.02

Q 0.015

0.01

0.005

0
64K - 2way (FDA) 64K - 2way (PDA) 128K - 4way (FDA) 128K - 4way (PDA)

Figure 7.6 Miss rate with Full Dynamic Associativity (FDA) and Partial
Dynamic Associativity (PDA)

www.manaraa.com

98

cache memory. This minimizes the impact of the reconfiguration with respect to the caching

capacity. This should not be a problem as most microprocessors use a 4-way set associative

cache.

The most important factors for speed-up are the reduced number of instructions and the

acceleration of computation with a specialized unit. Using the rfc instructions, we can reduce

the number of instructions significantly because most of the arithmetic instructions are replaced

with the operations in the RFC. Additionally, there is a reduction in the number of stack

memory accesses from the original source code. Since the computing unit in RFC is specialized

and customized for the desired computations, it can potentially feed the RFC with new data

every cycle. Moreover, the specialized unit replaces many operations from the original source

code. The data is loaded once in the pipeline and then processed through all the required

stages using a specialized computing unit configured from the RFC.

Configuration time: The time for configuration is determined with the number of sets

and cache line size in a cache module regardless of the associativity. If we configure partially

at run-time, the number of partial configuration steps is an additional factor. The number of

cycles for RFC configuration in the benchmarks is shown in Table 7.3. The configuration cycles

in the various organizations are shown in Table 7.4. The results indicate that the number of

sets is the dominant factor to determine the configuration time. This is because the number

of sets corresponds to the number of memory accesses (misses) and a larger cache line writes

contents of many LUTs simultaneously.

Table 7.3 Number of cycles for the configuration in benchmarks

32K-2way/64K-4way (256 sets) 64K-2way/128K-4way (512 sets)
mpeg2dec 1654 3112
mpeg2enc 1534 2998
cjpeg 1596 3060
FIR
- 16 taps 2236 4264
- 256 taps 12256 25684
1ER 1657 6125

www.manaraa.com

99

| • Base w/o RFC B CORE portion w/o RFC • Base w/ RFC M CORE portion w/ RFC |

o m
05 — "

32K- 128- 256- 512-
2way 64- 32- 16-

4way 4way 4way

mpeg2dec

32K- 128- 256- 512-
2way 64- 32- 16-

4 way 4 way 4 way

mpeg2enc

32K- 128- 256- 512-
2way 64- 32- 16-

4way 4way 4 way

cjpeg

|O Base w/o RFC BCORE portion w/o RFC • Base w/ RFC BCORE portion w/ RFC]

100

80

60

$
I
0

1
%
= 40 -H
E
2
°
Z 20

L I I
32K- 128- 256- 512-
2way 64- 32- 16-

4way 4way 4way

FIR (16taps)

32K- 128- 256- 512-
2way 64- 32- 16-

4way 4 way 4 way

FIR (256taps)

32K- 128- 256- 512-
2way 64- 32- 16-

4way 4way 4 way

IIR

Figure 7.7 Normalized execution cycles w/o RFC and w/ RFC built in
4-way associative cache (FDA)

www.manaraa.com

100

Table 7.4 Configuration cycles with different cache organizations (32K -
4way)

128 sets and 64B 256 sets with 32B 512sets with 16B
mpeg2dec 910 1592 2986
mpeg2enc 798 1478 2872
cjpeg 860 1540 2934
FIR
- 16 taps 1264 2177 4140
- 256 taps 6844 12137 25620
1ER 1725 3085 5885

Cache misses: When one of the data cache modules is configured as a computing unit,

the capacity of cache memory is reduced to 50% and 75% for 2-way and 4-way set associativity

in the full dynamic associativity, respectively. To see the effect of reduced memory capacity, we

profile the number of data accesses and misses in the level-1 data cache memory without and

with RFCs in Table 7.5 for the selected benchmarks. The miss rates for the benchmarks are

also shown in Figure 7.8. In a low associativity (2-way), the number of misses after configuring

an RFC as a computing unit is higher than the base processor without RFCs. However, the

number of misses in 128K 4-way set associative cache does not vary significantly with the

dynamic associativity. In FIR using the RFC, the total number of data accesses is cut down

due to the reduced number of stack accesses. Since the number of accesses for intermediate data

in the RFC process is added as many times as the number of partial reconfigurations, the total

number of misses increases. Note that the number of misses with RFC in mpeg2dec and 1ER is

smaller than without RFC. Most of the instructions executed in mpeg2dec are replaced with

the rfc instructions (about 77% for EDCT). However, the miss rate is higher than without

RFC. The data forwarding between OBUF and IB UP for 1ER described in Section 5.2.4.6

reduces the number of misses significantly. This forwarding may not be done in the original

benchmark with the base processor (without RFC) due to the nature of the program. As shown

in Figure 7.6, the number of misses reduces further with the partial dynamic associativity.

www.manaraa.com

101

Base w/o RFC •w/RFC
0.07

0.06

0.05 S
5
g 0.04

I
5

0.03

0.02

0.01

//// ^VVV* /VVV

mpeflZdec mpeg2«ic cjpeg FIR(16taps) FlR(256taps) IIR

Figure 7.8 Miss rate for level-1 data cache memory

Table 7.5 Number of data accesses and misses to level-1 data cache

mpeg2dec mpeg2enc cjpeg
access miss access miss access miss

32K
2-way

w/o RFC 557217369 1841048 395764840 5621892 88192493 522514 32K
2-way w/ RFC 243479064 3166490 388017519 24724727 88187936 1272728

64K
2-way

w/o RFC 557244797 1407812 396131144 4898529 88181257 473107 64K
2-way w/ RFC 244079977 1399239 377216829 13327688 88201102 917253

64K
4-way

w/o RFC 557242614 1316662 396774657 4856816 88185264 466513 64K
4-way w/ RFC 244214721 569710 376845411 5157770 88192895 486697

128K
4way

w/o RFC 557343109 1289796 396638308 3842490 88178858 423220 128K
4way w/ RFC 244215876 444390 376690409 4305989 88175818 438739

firl6 fir256 iir
access miss access miss access miss

32K
2-way

w/o RFC 5633761 2752 37092533 4247 4537186 47106 32K
2-way w/ RFC 3666798 9843 6618498 104043 || 3685969 7416

64K
2-way

w/o RFC 5634039 2109 37092077 2851 4536698 45774 64K
2-way w/ RFC 3667633 9420 6621253 105480 3686000 7286

64K
4-way

w/o RFC 5634260 1372 37091554 1378 4538886 2061 64K
4-way w/ RFC 3667575 8724 6619275 102924 3685741 6828

128K
4way

w/o RFC 5634260 1353 37091554 1360 4538887 1866 128K
4way w/ RFC 3668947 3129 6622567 7449 3686433 3939

www.manaraa.com

102

RFC organization: According to the simulation results with various parameters, we

determine the overall cache organization with RFC, such as associativity, number of sets, and

line size. A high-associativity minimizes the number of conflict misses caused by the reduction

in the associativity. A smaller number of sets and larger line size (with the minimal size of

RFC) reduces the configuration time because of a smaller number of memory accesses writing

many multi-bit LUT configurations in parallel. This is preferred if the reconfiguration of RFCs

occurs frequently, for instance, in an FIR filter with a large number of taps. However, a large

sized cache memory with a large number of sets reduces number of misses in general. The

large number of sets could reduce the conflict misses by distributing the blocks to be mapped

to a set into other sets, especially when an RFC is used as a computing unit. In the case of a

large number of sets in cache memories, the partial dynamic associativity, which changes the

associativity only in a small portion of cache, can reduce the impact of the reconfiguration

further. The computing time using RFCs does not vary with the different cache organizations

except with a small cache line size (16 bytes).

Memory bandwidth: A number of arithmetic instructions for the core computations

are replaced with the memory operations. In other words, the whole core computation is

transferred from software (instructions) to the specialized computing hardware with only the

interface instructions (rfc load/store). This may require a high off-chip memory bandwidth

(to level-2 cache) for a fast execution with the RFCs. We profile the memory bandwidth

between the level-2 unified cache memory and the off-chip memory as the required bandwidth

(for instructions and data) in bytes per cycle. The configuration data carries additional traffic

in using the RFCs. Figure 7.9 shows the memory bandwidth normalized to mpeg2dec for the

benchmarks. The memory bandwidth with the RFCs does not increase significantly. This is

because of the reduced number of instructions using the rfc instructions. A number of memory

accesses to fetch the instructions are removed. In FIR/HR, the required memory bandwidth

with RFC is significantly higher than without RFC compared to DCT/IDCT. The partial

configuration data causes the higher memory bandwidth, especially, in FIR with 256 taps.

www.manaraa.com

103

I base w/o RFC abase w/ RFC

300

270.3

5.

131.5
121.3 123-

mpeg2dec mpeg2enc cjpeg FIR (16 taps) FIR (256taps)

Figure 7.9 Memory bandwidth required per GPU cycle with a 32K - 4way
set associative cache

Adaptability: The simulation also shows that the base processor with a smaller size

cache memory and RFC performs better compared to a larger size cache without RFC. This

may suggest a microarchitecture with a smaller cache size matching the performance of a tra

ditional microarchitecture with a larger cache size. This fact is true in media applications

due to the streaming nature of data and the lack of temporal locality as mentioned in Sec

tion 1. However, the base processor considered in this thesis is a general-purpose computing

microprocessor. General applications with more random data accesses and higher temporal

locality other than media applications may need larger on-chip cache memory for a better

performance, (e.g. HP PA-8500 [18] with 1MB D-cache for fewer cache misses). This implies

that a general purpose computing processor would need a larger cache memory for a higher

performance of applications. These observations motivate the need for an adaptive amount of

resources - between memory and computing unit on demand. Thus, in ABC with RFCs, the

resources are more fully utilized and some of the applications are accelerated significantly.

To see the effect of the reconfigurability (adaptability) in this thesis, we also simulated

www.manaraa.com

104

SPEC-95 with 8-way and 4-way set associative caches with the parameters shown in Table 7.2.

We used the sim-cache simulator in Simplescalar [71]. Sim-cache profiles only the cache func

tionalities without any other processor parameters. The simulation parameters for memory

hierarchy are 32KB/128KB level-1 data cache and 1MB L-2 cache. The miss rates of level-1

data cache with both organizations in SPEC-95 are shown in Figure 7.10. The 4-way set as

sociativity reduces the number of cache misses in most cases, which can improve the overall

performance for the applications. We also simulated the SPEC-95 with 3-way and 4-way asso

ciative caches and the base parameters shown in Section 7.2.2. Some of the applications were

improved ranging from 0.3% to 1.6% with the 4-way set associative cache. If we had a sepa

rate specialized computing unit (like dedicated reconfigurable logic) and 3-way set associative

cache, we would not get the improvements achievable by a 4-way set associative cache with

RFC for SPEC-95 benchmarks. This provides us with a strong motivation to implement RFC

in general purpose processors.

7.4 Microprocessor with RFC vs. without RFC

A conventional general-purpose processor without the reconfigurable functional cache can

potentially store more data in its cache memory. However, a large cache does not speed

up FER/HR and DCT/IDCT as much as specialized computing resources can. A small area

overhead from a reconfigurable functional cache in a processor to provide these specialized

computing resources accelerates these functions. Moreover, the reconfigurability does not

affect other functions' execution time negatively since it does not penalize the cache access

(may be a bit slower or even faster as mentioned in Section 4.4). For example, a program with

half of its execution time due to FIR or DCT will speed up the FIR/DCT-half with RFC while

rest of the program retains the same execution time.

Since the reconfigurability of cache is an orthogonal design axis/issue with respect to a

conventional cache structure, the cache strategy does not affect the normal cache operation.

RFC does not require the existing cache structure to be modified. It does add additional

units such as partitioned decoder and interconnects without destroying conventional cache

www.manaraa.com

105

32K - 3way (128-64) B32K - 4way (128-64) j

r 0.04

Gy-f ^ y / y z s /
(a)

• 128K - 3way (512-64) • 128K - 4way (512-64) I

08 0.05

% 0.03

r 0.02

Figure 7.10 Miss rate with 3-way and 4-way set associative cache for
SPEC-95 (a) 32KB ; (b) 128KB

www.manaraa.com

106

architecture and strategies. Simply, a cache converts into a special function unit as a custom-

computing machine. The only negative effect is a potentially higher miss rate when part of

the cache is reconfigured for computing. However, less memory capacity does not impact the

performance of FIR and DCT (commonly used in multimedia applications) because a larger

size of cache memory does not scale linearly in a higher performance for media applications [76,

19, 20, 21]. Only the processor area will increase due to additional RFC logic (which is smaller

than other customized chips) with a higher performance for FIR and DCT/IDCT.

In summary, we are targeting a visible high performance (10's of speed up) of computations

in a microprocessor with a certain family of applications, such as multimedia and DSP appli

cations instead of improving general-purpose computing. The RFC could be one solution with

low complexity in microarchitecture and design. Other general-purpose computing applications

do not require high performance and need not be accelerated as much as media applications

since they do not contain high computing bandwidth tasks. The result of comparison depends

on the frequency of application use. However, media applications are used frequently requiring

high performance. This trend will continue until the advent of new application commodities.

Therefore, we are developing one possible solution that can accelerate the most common media

applications visibly on general-purpose microprocessor with low area/time overhead instead of

special purpose processor or dedicated hardware.

www.manaraa.com

107

CHAPTER 8. CONCLUSION

We have shown an Adaptive Balanced Computing (ABC) microarchitecture using RFCs as

a dynamic allocated resource. We have also shown a prototype of Reconfigurable Functional

Cache (RFC), which can perform both as a function unit and a cache, providing dynamic

memory/computing resources. The evaluation of ABC with minimal modification in microar

chitecture and cache memory is presented. The RFC can serve as a special computing unit

without any significant modification and overhead in area/time domains in cache architecture

and a microarchitecture. The RFC can be integrated into a microprocessor by adding a small

number of well-matched instructions to the existing Instruction Set Architecture (ISA) and

making minor changes to a conventional compiler. The proposed microarchitecture utilizing

RFC could also work in parallel with any ASIC/FPGA-like coprocessor in on-chip micropro

cessor. The resource reconfiguration produces a higher performance by providing resources

specialized to the computing requirements as compared to the fixed configuration of level-1

cache memories. The reconfiguration impacts the overall performance minimally. The result of

simulations for mpeg2 encoder/decoder in Distributed Arithmetic and FIR/IIR in MAC using

the RFC indicates that a certain class of applications (such as multimedia and DSP that are

compute-intensive and well-structured) can be accelerated highly. The area penalty for this

reconfiguration is about 50-60% of the memory cell cache array area with faster cache access

time, and 10-20% of the base cache array area with 1-2% increase in the cache access time.

In this thesis, a function-level optimization using the RFC is introduced as well. Since the

reconfigurable unit is based on LUTs, other applications, which have the same behavior (but

different characteristics - such as different coefficients and sequence of computation), may be

mapped/executed into the RFC without any significant addition. We have also shown a possi

www.manaraa.com

108

bility of dynamic distributed microarchitecture on demand of compute-bound applications by

unloading heavy computations from the processor core to RFC with a small architectural and

design modification. We are currently working towards an exclusive microarchitecture state for

RFCs to produce more parallelism using a DMA type of cache management unit, which loads

and stores data to/from the RFC independent on the core processor. The future work includes

programmable interconnection in RFC to support various computations. This would further

promote the efficient use of reconfigurable functional caches on a general purpose processor.

If independent multiple tasks are executed and multiple RFCs are used simultaneously, more

function-level parallelism can be achieved.

www.manaraa.com

109

BIBLIOGRAPHY

[1] John Vincent Atanasoff and Clifford Berry, "AtanasoE-Berry Computer (ABC)", 1937-

1942, available on http://www.scl.ameslab.gov/ABC/ABC.html.

[2] Andre' DeHon, "Reconfigurable Architectures for General-Purpose Computing", Ph D

Thesis, Lab. for Computer Science, MIT, Cambridge, MA, 1996.

[3] H.T. Kung, "Memory Requirements for Balanced Computer Architectures", Proceedings

of the 13th Annual Symposium on Computer Architecture, pp. 49-54, ACM, 1986.

[4] Chung-Ho Chen and Arun K. Somani, "Architecture Technique Trade-O fis Using Mean

Memory Delay Time", in IEEE transactions on Computers, Vol. 45, No. 10, pp. 1089-1100,

October 1996.

[5] J. Hennessy, "The Future of System Research", IEEE Computer, 32(8), pp. 27-33, Aug.

1999.

[6] John R. Hauser and John Wawrzynek, "Garp: A MIPS Processor with a Reconfigurable

Coprocessor",in Proceedings of the IEEE Symposium on Field-Programmable Custom

Computing Machines, Apr. 1997.

[7] André DeHon, "DPGA-coupled microprocessor: Commodity ICs for the early 21st cen

tury" , In D. a. Buell and K. L. Pocek, editors, Proceedings of IEEE workshop on FPGAs

for Custom Computing Machines, pp. 31-39, Napa, CA, Apr. 1994.

[8] R. Razdan and M. D. Smith, "A high-performance microarchitecture with hardware-

programmable functional units", in Proc. of the 27th Annual Intl. Symp. on microarchi

tecture, pp. 172-80. IEEE/ACM, Nov. 1994.

http://www.scl.ameslab.gov/ABC/ABC.html

www.manaraa.com

110

[9] A. Tyagi, " Reconfigurable memory queues/computing units architecture", in Proc. of the

Reconfigurable Architecture workshop at 11th International Parallel Processing Sympo

sium, Apr. 1997.

[10] 8. Hauck, T. W. Fry, M. M. Hosier, J. P. Kao, "The Chimaera Reconfigurable Func

tional Unit", in Proc. of IEEE Symposium on FPGAs for Custom Computing Ma-

chines(FCCM'97), pp. 87-96, 1997.

[11] Ralph D. Wittig and Paul Chow, "OneChip: An FPGA Processor With Reconfigurable

Logic", in IEEE Symposium on FPGAs For Custom Computing Machines (FCCM), 1996

[12] BRASS Research Group, Berkeley Reconfigurable Architectures, Systems, 8c Software,

"Integrating Processors and Reconfigurable Logic", 2001

available on http://brass.cs.berkeley.edu/reproc.html

[13] "The Hokie Instant RISC Microprocessor", Department of Electrical Engineering, Virginia

Tech, 1995-1996

available on http://www.ee.vt.edu/ harper/ee6504/rapid.html.

[14] Michael J. Flynn, Patrick Hung, and Kevin W. Rudd, "Deep-Submicron Microprocessor

Design Issues", in IEEE Micro Vol. 19, No. 4, July/August 1999.

[15] Y.Patt, S. Patel, M. Evers, D. Friendly, and J. Stark, "One billion Transistors, One

Uniprocessor, One Chip", IEEE Computer, pp. 51-57, Sep. 1997.

[16] The National Technology Roadmap for Semiconductors, technical report, Semiconductor

Industry Association., San Jose, CA., 1994 and 1997 (updates).

[17] John Hennessy, "The Future of Systems Research", IEEE Computer, pp. 27-33, Aug.

1999.

[18] Gregg Lesartre and Doug Hunt, "PA-8500: The Continuing Evolution of the PA-8000

Family", Hewlett-Packard Company, 2000,

available on http://www.cpus.hp.com/.

http://www.cpus.hp.com/

www.manaraa.com

Ill

[19] P. Ranganathan, S. Adve, and N. P. Jouppi, "Performance of Image and Video Processing

with General-Purpose Processors and Media ISA Extensions", Proceedings of the 26th

International Symposium on Computer Architecture, pp. 124-135, May 1999.

[20] P. Soderquist and M. Leeser, "Memory Traffic and Data Cache Behavior of an MPEG-2

Software Decoder", 1997 International Conference on Computer Design, Oct. 1997.

[21] J. Eijndhoven et al., "TriMedia CPU64 Architecture" 1999 International Conference on

Computer Design, Oct. 1999.

[22] Mark Oskin, Fredric T. Chong, and Timothy Sherwood, "Active Pages: A Computa

tion Model for Intelligent Memory", in Proc. of the 25th International Symposium on

Computer Architecture (ISCA'98).

[23] *Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen, Zhenzhou Ge, Vinh Lam, Pratap

Pattanaik and Josep Torrelas. "FlexRAM : Toward an Advanced Intelligent Memory Sys

tem" , Proc. of 1999 International Conference on Computer Design, pp. 47-55, Oct. 1999.

[24] Kimberley Keeton, Remzi Arpaci-Dusseau, and David A. Patterson, "IRAM and Smart-

SIMM: Overcoming the 1/O Bus Bottleneck", in Proc. of International Symposium on

Computer Architecture, June 1997.

[25] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberley Kee

ton, Chritoforos Kozyrakis, Randi Thomas, and Katherine Yelick, "A Case for Intelligent

RAM", in IEEE Micro, pp 33-44, March/April 1997.

[26] Doug Matzke, "Will Physical Scalability Sabotage Performance Gains?", IEEE Computer,

Vol. 30, No. 9, Sep. 1997

[27] Huesung Kim, Arun K. Somani, and Akhilesh Tyagi, "On Reconfiguring Cache for Com

puting" , in the Proceedings of PC CM '99, pp. 296-297, April 1999.

[28] Huesung Kim, Arun K. Somani, and Akhilesh Tyagi, "A Reconfigurabie Multi-function

Computing Cache Architecture", Intl. Symp. on FPGAs, pp. 85-94, February. 2000.

www.manaraa.com

112

[29] Huesung Kim, Arun K. Somani, and Akhilesh Tyagi, Extended version of "A Recon

figurable Multi-function Computing Cache Architecture", in IEEE transactions on Very

Large Scale Integration (VLSI), Vol. 9, No. 4, pp. 509-523, August 2001.

[30] Srihari Cadambi, Jeffrey Weener, Seth Copen Goldstein, Herman Schmit, Donald E.

Thomas, "Managing Pipeline-Reconfigurable FPGAs", in Proceedings ACM/SIGDA

Sixth International Symposium on Field Programmable Gate Arrays, February 1998.

[31] Xilinx Inc., "Virtex 2.5V Field Programmable Gate Arrays Datasheet", 2001,

available on http://www.xilinx.com/apps/virtexapp.htm.

[32] Xilinx Inc., San Jose, CA 95124-3400,

available on http://www.xilinx.com, 2001.

[33] J. Rose, R. Francis, D. Lewis, and P. Chow, "Architecture of programmable gate arrays:

The effect of logic block functionality on area efficiency", IEEE Journal of Solid-State

Circuits, v. 25, pp. 1217-1225, Oct. 1990.

[34] Andre' DeHon, "Balancing Interconnect and Computation in a Reconfigurable Computing

Array (or, why you don't really want 100% LUT utilization)", in Proc. of FPGA'99, Feb.

1999.

[35] Xilinx Inc., "Xilinx Application Notes", 2001,

available on http://www.xilinx.com/apps/appsweb.htm.

[36] Altera Inc., "On-Line Literature: Application Notes", 1995 - 2001,

available on http://www.altera.com/Iiterature/lit-an.html.

[37] Xilinx Inc., "XC4000 Series Field Programmable Gate Arrays", 2001

available on http://www.xilinx.com/apps/4O0O.htm.

[38] André DeHon, "A First Generation DPGA Implementation", in Third Canadian Work

shop of Field-Programmable Devices, Montreal, Canada, May 29-June 1, 1995.

http://www.xilinx.com/apps/virtexapp.htm
http://www.xilinx.com
http://www.xilinx.com/apps/appsweb.htm
http://www.altera.com/Iiterature/lit-an.html
http://www.xilinx.com/apps/4O0O.htm

www.manaraa.com

113

[39] Michael Bolotski, André DeHon, and Thomas F. Knight, Jr, "Unifying FPGAs and SIMD

Arrays", in 2nd International ACM/SIGDA Workshop on FPGAs, Berkeley, CA, Feb.

13-15, 1994.

[40] Bernardo Kastrup, Arjan Bink, and Jan Hoogerbrugge, "ConCISe: A Compiler-Driven

CPLD-Based Instruction Set Accelerator", in Proc. of IEEE Symposium on FPGAs for

Custom Computing Machines (FCCM'99), pp. 92-101, 1999.

[41] P. Kogge, "The EXECUBE Approach to Massively Parallel Processing", in Proc. of the

1994 International Conference on Parallel Processing, Aug. 1994.

[42] P. Ranganathan, S. Adve, and N. P. Jouppi, "Reconfigurable Caches and their Applica

tions to Media Processing", Proceedings of the 27th International Symposium on Com

puter Architecture, June 2000.

[43] Craig Wittenbrink and Aurn K. Somani, "Cache Tiling for High-Performance Morpho

logical Image Processing", Machine Vision and Applications, pp. 12-22, Nov. 1993.

[44] Alex Peleg and Uri Weiser, "MMX technology extension to the Intel architecture", in

IEEE Micro Vol.16, No. 4, Aug. 1996.

[45] Srinivas K. Raman, Vladimir Pentkovski, and Jagannath Keshava, "Implementing Stream

ing SIMD Extensions on the Pentium III processor", in IEEE Micro Vol.20, No. 4,

July/August 2000.

[46] Stuart Oberman, Greg Favor, and Fred Weber, "AMD 3DNow! Technology: Architecture

and Implementations", in IEEE Micro Vol.19, No. 2, March/April 1999.

[47] R. Lee, "Subword parallelism with MAX-2", in IEEE Micro , Vol.16, No. 4, Aug. 1996.

[48] M. Tremblay, J. M. O'Connor, V. Narayanan, and Liang He, "VIS speeds new media

processing", in IEEE Micro , Vol.16, No. 4 , Aug. 1996

www.manaraa.com

114

[49] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales, "AltiVec

Extension to PowerPC Accelerates Media Processing", in IEEE Micro Vol. 20, No. 2,

March/April 2000.

[50] Steven J.E Wilton and Norman P. Jouppi, "CACTI: an enhanced cache access and cycle

time model", IEEE Journal of Solid State Circuits, v. 31 May '96 pp. 677-688.

[51] "The UltraSPARC - Hz Microprocessor", Sun microsystems, 1997

available on http://www.sun.com/microelectronics/UltraSPARC-Hi/

[52] James E. Smith and Gurindar S. Sohi, "The Microarchitecture of Superscalar Processors",

in Proceedings of the IEEE, December 1995

[53] Mike Johnson, "Superscalar Microprocessor Design", Prentice Hall, 1991.

[54] Mathew Wojko and Hossam EIGindy, "Self Configuring Biary multiplier for LUT address

able FPGAs", in the 5th Australasian Conference on Parallel and Real-Time Systems

1998.

[55] J. Lachman and J. M. Hill, "A 500 MHz 1.5 MB cache with on-chip CPU", Digest of

Technical Papers, IEEE International Solid-State Circuits Conference (ISSCC), 1999

[56] Bharadwaj S. Amrutur, "Design and Analysis of Fast Low Power SRAMs", Ph. D. Dis

sertation, Dept. of Electrical Engineering, Stanford University, Aug. 1999.

[57] Wafer Electrical Test Data and SPICE Model Parameters, 2000

available on http://www.mosis.org/Technical/Testdata

[58] Deepali Deshpande, Arun K. Somani, and Akhilesh Tyagi, "Configuration Scheduling

Schemes for Striped FPGAs", in Proc. of FPGA'99, Feb. 1999, pp. 206-214.

[59] W. H. Chen, C. H. Smith, and S. V. Fralick. "A fast computational algorithm for the

discrete cosine transform", IEEE Transaction on Communications, Vol.COM-25, no.9,

pp. 1004-1009, Sep. 1977.

www.manaraa.com

115

[60] M. Maruyama, H. Uwabu, I. IwasaM, H. Fujuwara, T. Sakaguchi, M.T. Sun, and M.L.

Liou, "VLSI Architecture and Implementation of a Multi-Function, Forward/Inverse Dis

crete Cosine Transform Processor", SPIE Vol. 1360, Visual Communications and Image

Processing '90, pp. 410-417.

[61] P. Duhamel, C. GUILLEMOT, and J.C. Carlach, "A DCT Chip based on a new structured

and computationally efficient DCT algorithm", Proc. of IEEE ISCAS '90, pp. 77-80, New

Orleans, May 1990.

[62] T. Yoshino, R. Jain, P. Yang, H. Davis, W. Gass, and A. H. Shah, "A 100-MHz 64-tap

FIR Digital Filter in 0.8-fim BiCMOS Gate Array", IEEE Journal of Solid-State Circuits,

Vol. 25, No. 6, Dec. 1990, pp. 1494-1501.

[63] M. Hatamian and S. Rao, "A 100 MHz 40-tap programmable FIR filter chip" in Proc.

IEEE Int. Symp. Circuits Syst.,, 1990, pp. 3053-3056.

[64] Ishikawa et al., "Automatic layout synthesis for FIR filters using a silicon compiler", in

Proc. IEEE Int. Symp. Circuits Syst., 1990, pp. 2588-2591

[65] S. Hsia, B. Liu, J. Yang, and B. Bai,"VLSI Implementation of Parallel Coefficient-by-

Coefficient Two-Dimensional IDCT Processor", IEEE Transaction on Circuits and Sys

tems for Video Technology, Vol. 5, No. 5, Oct. 1995.

[66] T. Masaki, Y. Morimoto, T. Onoye, and I. Shirakawa, "VLSI Implementation of Inverse

Discrete Transformer and Motion Compensator for MPEG2 HDTV Video Decoding",

IEEE Transaction on Circuits and Systems for Video Technology, Vol. 5, No. 5, Oct.

1995.

[67] A. Madisetti, and A. N. Willson, "A 100 MHz 2-D 8x8 DCT/IDCT Processor for HDTV

Applications", IEEE Transaction on Circuits and Systems for Video Technology, Vol. 5,

No. 2, Apr. 1995.

[68] S. Uramoto et al., "A 100 MHz 2-D discrete cosine transform core processor", IEEE

Journal of Solid-State Circuits, Vol. 27, pp. 492-499, Apr. 1992.

www.manaraa.com

116

[69] M. Izumikawai et al., "A 0.25-/im CMOS 0.9-V 100-MHz DSP Core", IEEE Journal of

Solid-State Circuits, Vol. 32, No. 1, Jan. 1997, pp. 52-61.

[70] Fang Lu, and Henry Samueli, "A 200-MHz CMOS Pipelined Multiplier-Accumulator Us

ing a Quasi-Domino Dynamic Full-Adder Cell Design", IEEE Journal of Solid-State Cir

cuits, Vol, 28, No. 2, pp. 123-132, Deb. 1993.

[71] Doug Burger and Todd M. Austin, "The SimpleScalar Toot Set, Version 2.0', Computer

Sciences Department Technical Report #1342, University of Wisconsin-Madison, June,

1997.

[72] Xilinx Inc., "The Role of Distributed Arithmetic in FPGA-based Signal Processing", 2000

available on http://www.xilinx.com/apps/arith.htm

[73] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith, "MediaBench: A Tool

for Evaluating and Synthesizing Multimedia and Communications Systems" in Proc. of

the 30th Annual Intl. Symp. on Microarchitecture, pp.330-335, Dec. 1997.

[74] Nathan T. Slingerland and Alan Jay Smith, "Design and Characterization of the Berkeley

Multimedia Workload", University of California at Berkeley Tech Report CSD-00-1122,

Dec. 2000.

[75] Texas Instruments, "TMS320C6000 benchmarks", 2000

available on http://www.ti.com/sc/docs/products/dsp/c6000/62bench.htm

[76] Abhishek Singhal, "Reconfigurable Cache Module Architecture", M.S. Thesis, Department

of Computer Science, Iowa State University, Ames, IA, May 2000.

www.manaraa.com

117

ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to my supervisor, Dr. Arun K.

Somani, whose expertise, understanding, and patience added considerably to this research.

I appreciate his gentle encouragement, constructive criticism, and for training me to be a

successful researcher. I really appreciate his attention and concern regarding the research and

my personal problem, especially, his sincere guidance and advice when I had a hard time

because of my physical difficulties. IDs confidence in my ability directed me to succeed in

this work. I also appreciate the long hours that he spent with me working on papers. His

efforts and patience with my writing improved my technical writing skills significantly. It was

a pleasure to work with him from both the intellectual and personal points of view.

I also wish to express my sincere gratitude to my co-major professor, Dr. Akhilesh Tyagi, for

his assistance and advice on the research. I have deep regards for the advice and direction that

he gave me. His encouragement and respect to my ideas motivated me to work hard and further.

His valuable comments on my work and papers helped me to be a good researcher. I also

appreciate his sincere discussion on the research and papers. His insights and encouragement

have inspired me to complete this project.

I really appreciate the opportunities Dr. Somani and Dr. Tyagi have given me, particularly

the opportunity to research Adaptive Balanced Computing, computer architecture, and VLSI

design. I would also like to thank those who have helped me edit this thesis for English usage

errors, especially, Jon Froehlich, Rama Sangireddy, and Mona Dalai.

	2001
	Towards adaptive balanced computing (ABC) using reconfigurable functional caches (RFCs)
	Hue-Sung Kim
	Recommended Citation

	tmp.1410204246.pdf.VZKsZ

